Distributional Learning of Context-Free Grammars.

Alexander Clark

Department of Philosophy King's College London alexander.clark@kcl.ac.uk

14 November 2018 UCL

Outline

Introduction

Weak Learning

Strong Learning

An Algebraic Theory of CFGs

Outline

Introduction

Weak Learning

Strong Learning

An Algebraic Theory of CFGs

Standard machine learning problem

We learn a function $f : \mathcal{X} \to \mathcal{Y}$ from a sequence of input-output pairs $\langle (x_1, y_1) \dots (x_n, y_n) \rangle$

Convergence

As $n \to \infty$ we want our hypothesis \hat{f} to tend to f Ideally we want $\hat{f} = f$.

Standard two assumptions

- 1. Assume sets have some algebraic structure:
 - \mathcal{X} is \mathbb{R}^n
 - \mathcal{Y} is \mathbb{R}
- 2. Assume f satisfies some smoothness assumptions:
 - ► f is linear
 - ▶ or satisfies some Lipschitz condition: $|f(\mathbf{x}_i) f(\mathbf{x}_j| \le c |\mathbf{x}_i \mathbf{x}_j|$

- The input examples are strings.
- No output (unsupervised learning!)
- Our representations are context-free grammars.

Context-Free Grammars

Context-Free Grammar $G = \langle \Sigma, V, S, P \rangle$ $\mathcal{L}(G, A) = \{ w \in \Sigma^* \mid A \stackrel{*}{\Rightarrow}_G w \}$

Example $\Sigma = \{a, b\}, V = \{S\}$ $P = \{S \rightarrow ab, S \rightarrow aSb, S \rightarrow \epsilon\}$

$$\mathcal{L}(G,S) = \{a^n b^n \mid n \ge 0\}$$

Least fixed point semantics [Ginsburg and Rice(1962)]

Interpret this as a set of equations in $\mathcal{P}(\Sigma^*)$

$$S = (a \circ b) \lor (a \circ S \circ b) \lor \epsilon$$

Least fixed point semantics [Ginsburg and Rice(1962)]

Interpret this as a set of equations in $\mathcal{P}(\Sigma^*)$

$$S = (a \circ b) \lor (a \circ S \circ b) \lor \epsilon$$

•
$$\Xi$$
 is the set of functions $V \to \mathcal{P}(\Sigma^*)$
• $\Phi_G : \Xi \to \Xi$

$$\Phi_{G}(\xi)[S] = (a \circ b) \lor (a \circ \xi(S) \circ b) \lor \epsilon$$

Least fixed point $\xi_{G} = \bigvee_{n} \Phi_{G}^{n}(\xi_{\perp}) = \{S \to \mathcal{L}(G, S)\}$

What Algebra?

Monoid: $\langle S, \circ, 1 \rangle$

 Σ^*

What Algebra?

Monoid: $\langle S, \circ, 1 \rangle$

Σ^{*}

Complete Idempotent Semiring: $\langle S, \circ, 1, \lor, \bot \rangle$

$\mathcal{P}(\Sigma^*)$

Outline

Introduction

Weak Learning

Strong Learning

An Algebraic Theory of CFGs

Running example Propositional logic

Alphabet

rain, snow, hot, cold, danger A_1, A_2, \dots and, or, implies, iff $\land, \lor, \rightarrow, \leftrightarrow$ not \neg open, close (,)

Running example Propositional logic

Alphabet

rain, snow, hot, cold, danger A_1, A_2, \dots and, or, implies, iff $\land, \lor, \rightarrow, \leftrightarrow$ not \neg open, close (,)

rain

- open snow implies cold close
- open snow implies open not hot close close

Distributional Learning [Harris(1964)]

- Look at the dog
- Look at the cat

Distributional Learning [Harris(1964)]

- Look at the dog
- Look at the cat
- That cat is crazy

Distributional Learning [Harris(1964)]

- Look at the dog
- Look at the cat
- That cat is crazy
- That dog is crazy

- I can swim
- I may swim
- I want a can of beer

- I can swim
- I may swim
- I want a can of beer
- *I want a may of beer

- She is Italian
- She is a philosopher
- She is an Italian philosopher

- She is Italian
- She is a philosopher
- She is an Italian philosopher
- *She is an a philosopher philosopher

Propositional logic is *substitutable*:

- open rain and cold close
- open rain implies cold close
- open snow implies open not hot close

Propositional logic is *substitutable*:

- open rain and cold close
- open rain implies cold close
- open snow implies open not hot close
- open snow and open not hot close

Formally

The Syntactic Congruence: a monoid congruence Two nonempty strings u, v are congruent $(u \equiv_L v)$ if for all $l, r \in \Sigma^*$

 $lur \in L \Leftrightarrow lvr \in L$

We write [u] for the congruence class of u.

Definition *L* is substitutable if $lur \in L, lvr \in L \Rightarrow u \equiv_L v$

Example

Input data $D \subseteq L$

- hot
- cold
- open hot or cold close
- open not hot close
- open hot and cold close
- open hot implies cold close
- open hot iff cold close
- danger
- rain
- snow

One production for each example

- $S \rightarrow hot$
- $S \rightarrow \text{cold}$
- $S \rightarrow$ open hot or cold close
- $S \rightarrow$ open not hot close
- $S \rightarrow$ open hot and cold close
- $S \rightarrow$ open hot implies cold close
- $S \rightarrow$ open hot iff cold close
- $S \rightarrow \text{danger}$
- $S \rightarrow rain$
- $S \rightarrow \text{snow}$

A trivial grammar

Input data D $D = \{w_1, w_2, \dots, w_n\}$ are nonempty strings.

Starting grammar $S \rightarrow w_1, S \rightarrow w_2, \dots, S \rightarrow w_n$ $\mathcal{L}(G) = D$

A trivial grammar

Input data D $D = \{w_1, w_2, \dots, w_n\}$ are nonempty strings.

Starting grammar $S \rightarrow w_1, S \rightarrow w_2, \dots, S \rightarrow w_n$ $\mathcal{L}(G) = D$

Binarise this every way

One nonterminal [[w]] for every substring w.

▶
$$S \rightarrow \{w\}$$
, $w \in D$

▶ $[[w]] \rightarrow [[u]][[v]]$ when $w = u \cdot v$

$$\mathcal{L}(G, [[w]]) = \{w\}$$

Nonterminal for each substring

Nonterminal for each cluster

Productions

Observation If $w = u \cdot v$ then $[w] \supseteq [u] \cdot [v]$

Productions

Observation If $w = u \cdot v$ then $[w] \supseteq [u] \cdot [v]$ Add production $[[w]] \rightarrow [[u]][[v]]$

Productions

Observation If $w = u \cdot v$ then $[w] \supseteq [u] \cdot [v]$ Add production $[[w]] \rightarrow [[u]][[v]]$ Consequence If *L* is substitutable, then

> $\mathcal{L}(G, \llbracket w \rrbracket) \subseteq \llbracket w \rrbracket$ $\mathcal{L}(G) \subseteq L$

Theorem [Clark and Eyraud(2007)]

- If the language is a substitutable context-free language, then the hypothesis grammar will converge to a correct grammar.
- Efficient; provably correct

Theorem [Clark and Eyraud(2007)]

- If the language is a substitutable context-free language, then the hypothesis grammar will converge to a correct grammar.
- Efficient; provably correct

But the grammar may be different for each input data set!

Larger data set: 92 nonterminals, 435 Productions

open open hot and cold close and open rain implies snow close close

327204 parses

Outline

Introduction

Weak Learning

Strong Learning

An Algebraic Theory of CFGs

Strong Learning

Target class of grammars

 ${\mathcal G}$ is some set of context-free grammars. Pick some grammar ${\mathcal G}_* \in {\mathcal G}$

Weak learning

We receive examples w_1, \ldots, w_n, \ldots We produce a series of hypotheses G_1, \ldots, G_n, \ldots We want G_n to converge to some grammar \hat{G} such that $L(\hat{G}) = L(G_*)$

Strong Learning

Target class of grammars

 ${\mathcal G}$ is some set of context-free grammars. Pick some grammar ${\mathcal G}_* \in {\mathcal G}$

Strong learning

We receive examples w_1, \ldots, w_n, \ldots We produce a series of hypotheses G_1, \ldots, G_n, \ldots We want G_n to converge to some grammar \hat{G} such that $\hat{G} \equiv G_*$

Inaccurate clusters

Correct congruence classes

Myhill-Nerode Theorem

A language has a finite number of congruence classes if and only if it is regular.

Myhill-Nerode Theorem

A language has a finite number of congruence classes if and only if it is regular.

We need some principled way of picking a finite collection of "good" congruence classes.

Definition

Definition

A congruence class X is composite if there are two congruence classes Y, Z such that X = YZ. (and neither Y nor Z is the class $[\lambda]$)

Definition

A congruence class X is prime if it is not composite.

The whole is greater than the sum of the parts

Restriction

- We only consider substitutable languages which have a finite number of primes.
- We define nonterminals only for these primes.

Label	Examples
Р	rain, cold, open rain and cold close
0	open
С	close
В	and, or,
Ν	not, hot or, cold and

Fundamental theorem of substitutable languages

Every congruence class Q can be uniquely represented as a sequence of primes such that $Q = P_1 \dots P_n$

Fundamental theorem of substitutable languages

Every congruence class Q can be uniquely represented as a sequence of primes such that $Q = P_1 \dots P_n$

Intuition If X = YZ, and we have a rule

P
ightarrow QXR

then we can change it to

 $P \rightarrow QYZR$

hot iff

Productions

We need non-binary rules.

Correct productions

 $\begin{array}{l} P_0 \rightarrow P_1 \dots P_k \\ \text{where } P_0 \supsetneq P_1 \dots P_k \end{array}$

Infinite number of correct productions

▶ $N \rightarrow PB$

▶ ...

- $P \rightarrow ONPC$
- ▶ $P \rightarrow OPBPC$
- $P \rightarrow ONONPCC$

Productions

Valid productions

- Correct productions where the right hand side does not contain the right hand side of a valid production.
- If there are n primes then there are at most n² valid productions.

Examples

- ► $N \rightarrow PB$
- ▶ $P \rightarrow ONPC$

A Strong Learning Result

Class of grammars

 \mathcal{G}_{sc} is the class of canonical grammars for all substitutable languages with a finite number of primes.

Theorem [Clark(2014)]

There is an algorithm which learns \mathcal{G}_{sc}

- From positive examples
- Identification in the limit
- Strongly: converges structurally
- Using polynomial time and data

Running example

(verbatim output from implementation)

open open hot and cold close and open rain implies snow close close

1 parse

Outline

Introduction

Weak Learning

Strong Learning

An Algebraic Theory of CFGs

Contexts

A context is a string with a hole:

l□r

Derivation contexts

The derivation contexts of CFGs are just string contexts:

 $S \stackrel{*}{\Rightarrow}_{G} INr$

Definition

Filling the hole $I \Box r \odot u = lur$

A factorisation of a language *L C* is a set of contexts; *S* is a set of strings

 $C \odot S \subseteq L$

Context free grammars

Contexts and yields $\mathcal{L}(G, N) = \{ w \in \Sigma^* \mid N \stackrel{*}{\Rightarrow} w \}$ $\mathcal{C}(G, N) = \{ I \Box r \mid S \stackrel{*}{\Rightarrow} INr \}.$

Nonterminals in a context-free grammar

 $\mathcal{C}(G,N) \odot \mathcal{L}(G,N) \subseteq L$

Context free grammars

Contexts and yields $\mathcal{L}(G, N) = \{ w \in \Sigma^* \mid N \stackrel{*}{\Rightarrow} w \}$ $\mathcal{C}(G, N) = \{ I \Box r \mid S \stackrel{*}{\Rightarrow} I N r \}.$

Nonterminals in a context-free grammar

$$\mathcal{C}(G,N) \odot \mathcal{L}(G,N) \subseteq L$$

We can reverse this process and go from a collection of decompositions back to a CFG.

Polar maps

If S is a set of strings:

$$S^{\triangleright} = \{ I \Box r \mid \forall u \in S, lur \in L \}$$
(1)

If C is a set of contexts:

$$C^{\triangleleft} = \{ u \in \Sigma^* \mid \forall I \Box r \in C, \, lur \in L \}$$
(2)

Polar maps

If S is a set of strings:

$$S^{\triangleright} = \{ I \Box r \mid \forall u \in S, lur \in L \}$$
(1)

If C is a set of contexts:

$$C^{\triangleleft} = \{ u \in \Sigma^* \mid \forall I \Box r \in C, \, lur \in L \}$$
(2)

 \cdot^{\triangleright} and \cdot^{\triangleleft} form a Galois connection between sets of strings and sets of contexts.

Closed sets of strings

- \cdot^{\bowtie} is a closure operator on the sets of strings;
- $X^{\triangleright} = Y^{\triangleright}$ is a CIS-congruence;
- ► *L* is always closed.

Closed sets of strings

- .▷⊲ is a closure operator on the sets of strings;
- $X^{\triangleright} = Y^{\triangleright}$ is a CIS-congruence;
- L is always closed.

The syntactic concept lattice

The set of all closed sets of strings form a complete idempotent semiring: $\mathfrak{B}(L)$.

(A generalisation of the syntactic monoid; the collection of maximal decompositions into strings and contexts.)
L is regular iff $\mathfrak{B}(L)$ is finite $L = (ab)^*$

Recognising a language

Definition

We say that a CIS *B* recognizes *L* if there is a surjective morphism h from $\mathcal{P}(\Sigma^*) \to B$ such that $h^*(h(L)) = L$, where h^* is the residual of h.

Definition

We say that a CIS *B* recognizes *L* if there is a surjective morphism h from $\mathcal{P}(\Sigma^*) \to B$ such that $h^*(h(L)) = L$, where h^* is the residual of h.

Given a CIS *B* and a homomorphism $h : \mathcal{P}(\Sigma^*) \to B$, we can define a new grammar $\phi_h(G)$ by merging nonterminals *M*, *N* if

 $h(\mathcal{L}(G,M))=h(\mathcal{L}(G,N))$

Theorem

Let G be a CFG over Σ and h a homomorphism $h : \mathcal{P}(\Sigma^*) \to B$. Then

- $\phi_h(G)$ defines the same language as G iff
- B recognizes L through h

Theorem

Let G be a CFG over Σ and h a homomorphism $h : \mathcal{P}(\Sigma^*) \to B$. Then

- $\phi_h(G)$ defines the same language as G iff
- B recognizes L through h

Uniqueness

There is a unique 'smallest' CIS that recognizes L: which is $\mathfrak{B}(L)$.

The universal morphism

The universal cfg-morphism

[Clark(2013)]

Mergeable nonterminals If

$$\mathcal{L}(G,M)^{\triangleright\triangleleft}=\mathcal{L}(G,N)^{\triangleright\triangleleft}$$

then we can merge M and N without increasing the language defined by $G,\,$

[Clark(2013)]

Mergeable nonterminals If

$$\mathcal{L}(G,M)^{\triangleright\triangleleft} = \mathcal{L}(G,N)^{\triangleright\triangleleft}$$

then we can merge M and N without increasing the language defined by G,

Minimal grammars correspond to maximal factorisations

A grammar without mergable nonterminals will have nonterminals that correspond to closed sets of strings.

Conclusion

- We can learn context-free grammars weakly decomposing strings into contexts and substrings.
- Minimal grammars will correspond to maximal decompositions.
- We can learn grammars strongly by identifying structure in some canonical algebras associated with the languages:
 - the syntactic monoid
 - the syntactic concept lattice.
- The same approach applies to Multiple Context-Free Grammars, a mildly context-sensitive grammar formalism.

Bibliography

Alexander Clark.

The syntactic concept lattice: Another algebraic theory of the context-free languages? Journal of Logic and Computation, 2013. doi: 10.1093/logcom/ext037.

Alexander Clark.

Learning trees from strings: A strong learning algorithm for some context-free grammars. Journal of Machine Learning Research, 14:3537–3559, 2014. URL http://jmlr.org/papers/v14/clark13a.html.

Alexander Clark and Remi Eyraud. Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research, 8:1725–1745, August 2007.

S. Ginsburg and H.G. Rice. Two families of languages related to ALGOL. Journal of the ACM (JACM), 9(3):350–371, 1962.

Zellig Harris.

Distributional structure.

In J. A. Fodor and J. J. Katz, editors, *The structure of language: Readings in the philosophy of language*, pages 33–49. Prentice-Hall, 1964.