Distributional Learning of Context-Free Grammars.

Alexander Clark

Department of Philosophy King's College London alexander.clark@kcl.ac.uk

14 November 2018 UCL

Outline

[Introduction](#page-2-0)

[Weak Learning](#page-11-0)

[Strong Learning](#page-39-0)

[An Algebraic Theory of CFGs](#page-63-0)

Outline

[Introduction](#page-2-0)

[Weak Learning](#page-11-0)

[Strong Learning](#page-39-0)

[An Algebraic Theory of CFGs](#page-63-0)

Standard machine learning problem

We learn a function $f : \mathcal{X} \to \mathcal{Y}$ from a sequence of input-output pairs $\langle (x_1, y_1) \dots (x_n, y_n) \rangle$

Convergence

As $n\to\infty$ we want our hypothesis \hat{f} to tend to f Ideally we want $\hat{f} = f$.

Standard two assumptions

- 1. Assume sets have some algebraic structure:
	- \blacktriangleright \mathcal{X} is \mathbb{R}^n
	- \blacktriangleright $\mathcal Y$ is $\mathbb R$
- 2. Assume f satisfies some smoothness assumptions:
	- \blacktriangleright f is linear
	- ► or satisfies some Lipschitz condition: $|f(\mathsf{x_i}) f(\mathsf{x_j}| \leq c |\mathsf{x_i} \mathsf{x_j}|$
- \blacktriangleright The input examples are strings.
- \triangleright No output (unsupervised learning!)
- \triangleright Our representations are context-free grammars.

Context-Free Grammars

Context-Free Grammar $G = \langle \Sigma, V, S, P \rangle$ $\mathcal{L}(\mathcal{G}, \mathcal{A}) = \{ w \in \Sigma^* \mid A \stackrel{*}{\Rightarrow}_{\mathcal{G}} w \}$

Example $\Sigma = \{a, b\}, V = \{S\}$ $P = \{S \rightarrow ab, S \rightarrow aSb, S \rightarrow \epsilon\}$

$$
\mathcal{L}(G, S) = \{a^n b^n \mid n \geq 0\}
$$

Least fixed point semantics [\[Ginsburg and Rice\(1962\)\]](#page-82-0)

Interpret this as a set of equations in $\mathcal{P}(\mathsf{\Sigma}^*)$

$$
S = (a \circ b) \vee (a \circ S \circ b) \vee \epsilon
$$

Least fixed point semantics [\[Ginsburg and Rice\(1962\)\]](#page-82-0)

Interpret this as a set of equations in $\mathcal{P}(\mathsf{\Sigma}^*)$

$$
S=(a\circ b)\vee (a\circ S\circ b)\vee \epsilon
$$

\n- $$
\blacktriangleright \equiv
$$
 is the set of functions $V \to \mathcal{P}(\Sigma^*)$
\n- $\blacktriangleright \Phi_G : \Xi \to \Xi$
\n

$$
\Phi_G(\xi)[S] = (a \circ b) \lor (a \circ \xi(S) \circ b) \lor \epsilon
$$

Least fixed point $\xi_G = \bigvee_n \Phi_G^n(\xi_\perp) = \{S \to \mathcal{L}(G, S)\}$

What Algebra?

Monoid: $\langle S, \circ, 1 \rangle$

Σ ∗

What Algebra?

Monoid: $\langle S, \circ, 1 \rangle$

Σ ∗

Complete Idempotent Semiring: $\langle S, \circ, 1, \vee, \perp \rangle$

$\mathcal{P}(\Sigma^*)$

Outline

[Introduction](#page-2-0)

[Weak Learning](#page-11-0)

[Strong Learning](#page-39-0)

[An Algebraic Theory of CFGs](#page-63-0)

Running example Propositional logic

Alphabet

rain, snow, hot, cold, danger A_1, A_2, \ldots and, or, implies, iff $\wedge, \vee, \rightarrow, \leftrightarrow$ $\overline{}$ not $\overline{}$ open, close (,)

Running example Propositional logic

Alphabet

rain, snow, hot, cold, danger A_1, A_2, \ldots and, or, implies, iff $\wedge, \vee, \rightarrow, \leftrightarrow$ $\overline{}$ not $\overline{}$ open, close (,)

 \blacktriangleright rain

- \triangleright open snow implies cold close
- \triangleright open snow implies open not hot close close

Distributional Learning [\[Harris\(1964\)\]](#page-82-1)

- \blacktriangleright Look at the dog
- \blacktriangleright Look at the cat

Distributional Learning [\[Harris\(1964\)\]](#page-82-1)

- \blacktriangleright Look at the dog
- \blacktriangleright Look at the cat
- \blacktriangleright That cat is crazy

Distributional Learning [\[Harris\(1964\)\]](#page-82-1)

- \blacktriangleright Look at the dog
- \blacktriangleright Look at the cat
- \blacktriangleright That cat is crazy
- \blacktriangleright That dog is crazy

- \blacktriangleright I can swim
- \blacktriangleright | may swim
- I want a can of beer

- \blacktriangleright I can swim
- \blacktriangleright | may swim
- I want a can of beer
- If $*$ I want a may of beer

- \blacktriangleright She is Italian
- \blacktriangleright She is a philosopher
- \triangleright She is an Italian philosopher

- \blacktriangleright She is Italian
- \blacktriangleright She is a philosopher
- \triangleright She is an Italian philosopher
- \triangleright *She is an a philosopher philosopher

Propositional logic is substitutable:

- \triangleright open rain and cold close
- \triangleright open rain implies cold close
- \triangleright open snow implies open not hot close

Propositional logic is substitutable:

- \triangleright open rain and cold close
- \triangleright open rain implies cold close
- \triangleright open snow implies open not hot close
- \triangleright open snow and open not hot close

Formally

The Syntactic Congruence: a monoid congruence Two nonempty strings u, v are congruent $(u \equiv_L v)$ if for all $l,r \in \Sigma^*$

 $\ln r \in I \Leftrightarrow \ln r \in I$

We write $[u]$ for the congruence class of u .

Definition L is substitutable if $Iur \in L$, $Ivr \in L \Rightarrow u \equiv_1 v$

Example

Input data $D \subset L$

- \blacktriangleright hot
- \blacktriangleright cold
- \triangleright open hot or cold close
- \triangleright open not hot close
- \triangleright open hot and cold close
- \triangleright open hot implies cold close
- \triangleright open hot iff cold close
- \blacktriangleright danger
- \blacktriangleright rain
- \blacktriangleright snow

One production for each example

- \blacktriangleright $S \rightarrow$ hot
- \blacktriangleright $S \rightarrow$ cold
- \triangleright $S \rightarrow$ open hot or cold close
- \triangleright $S \rightarrow$ open not hot close
- \triangleright $S \rightarrow$ open hot and cold close
- \triangleright $S \rightarrow$ open hot implies cold close
- \triangleright $S \rightarrow$ open hot iff cold close
- \blacktriangleright $S \rightarrow$ danger
- \blacktriangleright $S \rightarrow$ rain
- \blacktriangleright S \rightarrow snow

A trivial grammar

Input data D $D = \{w_1, w_2, \ldots, w_n\}$ are nonempty strings.

Starting grammar $S \to w_1, S \to w_2, \ldots, S \to w_n$ $\mathcal{L}(G) = D$

A trivial grammar

Input data D $D = \{w_1, w_2, \ldots, w_n\}$ are nonempty strings.

Starting grammar $S \to w_1, S \to w_2, \ldots, S \to w_n$ $\mathcal{L}(G) = D$

Binarise this every way

One nonterminal $[[w]]$ for every substring w.

$$
\blacktriangleright \; [[a]] \to a
$$

$$
\blacktriangleright S \to \{w\}, w \in D
$$

 \blacktriangleright $[[w]] \rightarrow [[u]][[v]]$ when $w = u \cdot v$

$$
\mathcal{L}(G, [[w]]) = \{w\}
$$

Nonterminal for each substring

Nonterminal for each cluster

Productions

Observation If $w = u \cdot v$ then $[w] \supseteq [u] \cdot [v]$

Productions

Observation If $w = u \cdot v$ then $[w] \supseteq [u] \cdot [v]$ Add production

 $[[w]] \rightarrow [[u]][[v]]$

Productions

Observation If $w = u \cdot v$ then $[w] \supseteq [u] \cdot [v]$ Add production $[[w]] \rightarrow [[u]][[v]]$ **Consequence** If L is substitutable, then

 $\mathcal{L}(G, [[w]]) \subseteq [w]$

 $\mathcal{L}(G) \subseteq L$

Theorem [\[Clark and Eyraud\(2007\)\]](#page-82-2)

- If the language is a substitutable context-free language, then the hypothesis grammar will converge to a correct grammar.
- \blacktriangleright Efficient; provably correct

Theorem [\[Clark and Eyraud\(2007\)\]](#page-82-2)

- If the language is a substitutable context-free language, then the hypothesis grammar will converge to a correct grammar.
- \blacktriangleright Efficient; provably correct

But the grammar may be different for each input data set!

Larger data set: 92 nonterminals, 435 Productions

open open hot and cold close and open rain implies snow close close

327204 parses

Outline

[Introduction](#page-2-0)

[Weak Learning](#page-11-0)

[Strong Learning](#page-39-0)

[An Algebraic Theory of CFGs](#page-63-0)

Strong Learning

Target class of grammars

 G is some set of context-free grammars. Pick some grammar $G_* \in \mathcal{G}$

Weak learning

We receive examples w_1, \ldots, w_n, \ldots We produce a series of hypotheses G_1, \ldots, G_n, \ldots We want G_n to converge to some grammar \hat{G} such that $L(\hat{G})=L(G_*)$

Strong Learning

Target class of grammars

 G is some set of context-free grammars. Pick some grammar $G_* \in \mathcal{G}$

Strong learning

We receive examples w_1, \ldots, w_n, \ldots We produce a series of hypotheses G_1, \ldots, G_n, \ldots We want G_n to converge to some grammar \hat{G} such that $\hat{G} \equiv G_*$

Inaccurate clusters

Correct congruence classes

Myhill-Nerode Theorem

A language has a finite number of congruence classes if and only if it is regular.

Myhill-Nerode Theorem

A language has a finite number of congruence classes if and only if it is regular.

We need some principled way of picking a finite collection of "good" congruence classes.

Definition

Definition

A congruence class X is composite if there are two congruence classes Y, Z such that $X = YZ$. (and neither Y nor Z is the class $[\lambda]$)

Definition

A congruence class X is prime if it is not composite.

The whole is greater than the sum of the parts

Restriction

- \triangleright We only consider substitutable languages which have a finite number of primes.
- \triangleright We define nonterminals only for these primes.

Fundamental theorem of substitutable languages

Every congruence class Q can be uniquely represented as a sequence of primes such that $Q = P_1 \dots P_n$

Fundamental theorem of substitutable languages

Every congruence class Q can be uniquely represented as a sequence of primes such that $Q = P_1 \dots P_n$

Intuition If $X = YZ$, and we have a rule

 $P \rightarrow QXR$

then we can change it to

 $P \rightarrow QYZR$

or cold close

implies cold close

iff cold close

hot iff hot and hot implies hot or

open hot

Productions

We need non-binary rules. Correct productions $P_0 \rightarrow P_1 \ldots P_k$ where $P_0 \supseteq P_1 \ldots P_k$

Infinite number of correct productions

 \blacktriangleright $N \rightarrow PB$

 \blacktriangleright ...

- \blacktriangleright P \rightarrow ONPC
- $P \rightarrow OPBPC$
- $P \rightarrow ONONPCC$

Productions

Valid productions

- \triangleright Correct productions where the right hand side does not contain the right hand side of a valid production.
- If there are *n* primes then there are at most n^2 valid productions.

Examples

- \blacktriangleright $N \rightarrow PB$
- \blacktriangleright P \rightarrow ONPC

A Strong Learning Result

Class of grammars

 \mathcal{G}_{sc} is the class of canonical grammars for all substitutable languages with a finite number of primes.

Theorem [\[Clark\(2014\)\]](#page-82-0)

There is an algorithm which learns \mathcal{G}_{sc}

- \blacktriangleright From positive examples
- \blacktriangleright Identification in the limit
- \triangleright Strongly: converges structurally
- \triangleright Using polynomial time and data

Running example

(verbatim output from implementation)

open open hot and cold close and open rain implies snow close close

1 parse

Outline

[Introduction](#page-2-0)

[Weak Learning](#page-11-0)

[Strong Learning](#page-39-0)

[An Algebraic Theory of CFGs](#page-63-0)

Contexts

A context is a string with a hole:

$I\Box r$

Derivation contexts

The derivation contexts of CFGs are just string contexts:

$$
S \stackrel{*}{\Rightarrow}_G INr
$$

Definition

Filling the hole $I\Box r \odot u = \textit{lur}$

A factorisation of a language L C is a set of contexts; S is a set of strings

 $C \odot S \subset L$

Context free grammars

Contexts and yields $\mathcal{L}(G, N) = \{ w \in \Sigma^* \mid N \stackrel{*}{\Rightarrow} w \}$ $C(G, N) = \{ \Box r \mid S \stackrel{*}{\Rightarrow} \textit{INr} \}.$

Nonterminals in a context-free grammar

 $C(G, N) \odot C(G, N) \subset L$

Context free grammars

Contexts and yields $\mathcal{L}(G, N) = \{ w \in \Sigma^* \mid N \stackrel{*}{\Rightarrow} w \}$ $C(G, N) = \{ \Box r \mid S \stackrel{*}{\Rightarrow} \textit{INr} \}.$

Nonterminals in a context-free grammar

$$
\mathcal{C}(\mathsf{G},\mathsf{N})\odot \mathcal{L}(\mathsf{G},\mathsf{N})\subseteq \mathsf{L}
$$

We can reverse this process and go from a collection of decompositions back to a CFG.

Polar maps

If S is a set of strings:

$$
S^{\triangleright} = \{ I \square r \mid \forall u \in S, \text{I}ur \in L \}
$$
 (1)

If C is a set of contexts:

$$
C^{d} = \{ u \in \Sigma^* \mid \forall I \square r \in C, \text{lar} \in L \}
$$
 (2)

Polar maps

If S is a set of strings:

$$
S^{\triangleright} = \{I \square r \mid \forall u \in S, \text{I}ur \in L\} \tag{1}
$$

If C is a set of contexts:

$$
C^{d} = \{ u \in \Sigma^* \mid \forall I \square r \in C, \text{lar} \in L \}
$$
 (2)

.^b and \cdot^{\triangleleft} form a Galois connection between sets of strings and sets of contexts.

Closed sets of strings

- \blacktriangleright \cdot^{\bowtie} is a closure operator on the sets of strings;
- \blacktriangleright $X^{\triangleright} = Y^{\triangleright}$ is a CIS-congruence;
- \blacktriangleright *L* is always closed.

Closed sets of strings

- \blacktriangleright \cdot^{\bowtie} is a closure operator on the sets of strings;
- \blacktriangleright $X^{\triangleright} = Y^{\triangleright}$ is a CIS-congruence;
- \blacktriangleright L is always closed.

The syntactic concept lattice

The set of all closed sets of strings form a complete idempotent semiring: $\mathfrak{B}(L)$.

(A generalisation of the syntactic monoid; the collection of maximal decompositions into strings and contexts.)
L is regular iff $\mathfrak{B}(L)$ is finite $L = (ab)^*$

Recognising a language

Definition

We say that a CIS B recognizes L if there is a surjective morphism *h* from $\mathcal{P}(\Sigma^*) \to B$ such that $h^*(h(L)) = L$, where h^* is the residual of h.

Definition

We say that a CIS B recognizes L if there is a surjective morphism *h* from $\mathcal{P}(\Sigma^*) \to B$ such that $h^*(h(L)) = L$, where h^* is the residual of h.

Given a CIS B and a homomorphism $h: \mathcal{P}(\Sigma^*) \to B$, we can define a new grammar $\phi_h(G)$ by merging nonterminals M, N if

 $h(\mathcal{L}(G, M)) = h(\mathcal{L}(G, N))$

Theorem

Let G be a CFG over Σ and h a homomorphism $h : \mathcal{P}(\Sigma^*) \to B$. Then

- \blacktriangleright $\phi_h(G)$ defines the same language as G iff
- \triangleright B recognizes L through h

Theorem

Let G be a CFG over Σ and h a homomorphism $h : \mathcal{P}(\Sigma^*) \to B$. Then

- \blacktriangleright $\phi_h(G)$ defines the same language as G iff
- \triangleright B recognizes L through h

Uniqueness

There is a unique 'smallest' CIS that recognizes L: which is $\mathfrak{B}(L)$.

The universal morphism

The universal cfg-morphism

[\[Clark\(2013\)\]](#page-82-0)

Mergeable nonterminals If

$$
\mathcal{L}(\mathit{G},\mathit{M})^{\triangleright\triangleleft}=\mathcal{L}(\mathit{G},\mathit{N})^{\triangleright\triangleleft}
$$

then we can merge M and N without increasing the language defined by G,

[\[Clark\(2013\)\]](#page-82-0)

Mergeable nonterminals If

$$
\mathcal{L}(G,M)^{\triangleright\triangleleft}=\mathcal{L}(G,N)^{\triangleright\triangleleft}
$$

then we can merge M and N without increasing the language defined by G,

Minimal grammars correspond to maximal factorisations

A grammar without mergable nonterminals will have nonterminals that correspond to closed sets of strings.

Conclusion

- \triangleright We can learn context-free grammars weakly decomposing strings into contexts and substrings.
- \triangleright Minimal grammars will correspond to maximal decompositions.
- \triangleright We can learn grammars strongly by identifying structure in some canonical algebras associated with the languages:
	- \blacktriangleright the syntactic monoid
	- \blacktriangleright the syntactic concept lattice.
- \blacktriangleright The same approach applies to Multiple Context-Free Grammars, a mildly context-sensitive grammar formalism.

Bibliography

Alexander Clark.

The syntactic concept lattice: Another algebraic theory of the context-free languages? Journal of Logic and Computation, 2013. doi: 10.1093/logcom/ext037.

Alexander Clark.

Learning trees from strings: A strong learning algorithm for some context-free grammars. Journal of Machine Learning Research, 14:3537–3559, 2014. URL http://jmlr.org/papers/v14/clark13a.html.

Alexander Clark and Rémi Eyraud. Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research, 8:1725–1745, August 2007.

S. Ginsburg and H.G. Rice. Two families of languages related to ALGOL. Journal of the ACM (JACM), 9(3):350–371, 1962.

Zellig Harris.

Distributional structure.

In J. A. Fodor and J. J. Katz, editors, The structure of language: Readings in the philosophy of language, pages 33-49. Prentice-Hall, 1964.