Distributional Learning of Context-Free
Grammars.

Alexander Clark

Department of Philosophy
King's College London
alexander.clark@kcl.ac.uk

14 November 2018
UCL



Outline

Introduction

Weak Learning

Strong Learning

An Algebraic Theory of CFGs



Outline

Introduction



Machine learning

Standard machine learning problem
We learn a function f : X — Y from a sequence of input-output
pairs ((x1,¥1) - - - (Xn;¥n))

Convergence

As n — co we want our hypothesis f to tend to f
Ideally we want f = £,



Vector spaces

Standard two assumptions

1. Assume sets have some algebraic structure:
» X is R”
» VisR
2. Assume f satisfies some smoothness assumptions:

» fis linear
» or satisfies some Lipschitz condition: |f(x;) — f(x;| < c[x; — x|



» The input examples are strings.
» No output (unsupervised learning!)

» Our representations are context-free grammars.



Context-Free Grammars

Context-Free Grammar
G=(X,V,5P)
LG A ={wecI*|AZcw)

Example
Y ={a,b},V ={S}
P={S—ab,§ — aSh,S — €}

£(G,S) = {a"b" | n >0}



Least fixed point semantics
[Ginsburg and Rice(1962)]

Interpret this as a set of equations in P(X*)

S=(aob)V(aoSob)Ve



Least fixed point semantics
[Ginsburg and Rice(1962)]

Interpret this as a set of equations in P(X*)

S=(aob)V(aoSob)Ve

» = is the set of functions V — P(X*)
> b ===
®6(§)[S] = (aob) v (acg(S)ob) Ve
Least fixed point {6 =/, PL(£1) = {S = L(G,S)}



What Algebra?

Monoid: (S,0,1)

Z*



What Algebra?

Monoid: (S, o, 1)
Z*
Complete Idempotent Semiring: (S,0,1,V, 1)

P(XF)
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Running example

Propositional logic

Alphabet
rain, snow, hot, cold, danger
and, or, implies, iff
not
open, close

A1, A, ..
N,V —, >



Running example

Propositional logic

Alphabet
rain, snow, hot, cold, danger Aj, Ay, ...
and, or, implies, iff AV, =5, 4>
not =
open, close ()
> rain

» open snow implies cold close

» open snow implies open not hot close close



Distributional Learning
[Harris(1964)]

» Look at the dog
» Look at the cat



Distributional Learning
[Harris(1964)]

» Look at the dog
» Look at the cat

» That cat is crazy



Distributional Learning
[Harris(1964)]

v

Look at the dog
Look at the cat

v

v

That cat is crazy

v

That dog is crazy



English counterexample

» | can swim
> | may swim

» | want a can of beer



English counterexample

» | can swim
> | may swim

| want a can of beer

v

v

*| want a may of beer



English counterexample

» She is ltalian
» She is a philosopher

» She is an ltalian philosopher



English counterexample

She is ltalian

v

v

She is a philosopher

v

She is an ltalian philosopher

v

*She is an a philosopher philosopher



Logic example

Propositional logic is substitutable:
» open rain and cold close
» open rain implies cold close

» open snow implies open not hot close



Logic example

Propositional logic is substitutable:

» open rain and cold close
» open rain implies cold close
» open snow implies open not hot close

» open snow and open not hot close



Formally

The Syntactic Congruence: a monoid congruence

Two nonempty strings u, v are congruent (u =, v) if for all
l,reX*
lurel < vrel
We write [u] for the congruence class of wu.
Definition

L is substitutable if
lureliivrel=u=v



Example

Input data D C L

» hot

» cold

» open hot or cold close

» open not hot close

» open hot and cold close

» open hot implies cold close
» open hot iff cold close

» danger

> rain

> snow



One production for each example

v

v

v

v

v

v

v

v

v

v

S—
S—
S—
S—
S—
S—
S—
S—
S—
S—

hot

cold

open hot or cold close
open not hot close

open hot and cold close
open hot implies cold close
open hot iff cold close
danger

rain

snow



A trivial grammar

Input data D
D = {wi,ws,...,w,} are nonempty strings.

Starting grammar

S—>w,S—>w,...,S > w,
L(G)=D



A trivial grammar

Input data D
D = {wi,ws,...,w,} are nonempty strings.

Starting grammar
S>wm,S5—>w,....,.5 > w,
L(G)=D
Binarise this every way
One nonterminal [[w]] for every substring w.
> [[al] — a
» S—>{w},weD
> [[wl] = [[u]][[V]] when w = u- v

L(G, [W]]) = {w}



S

[[open not hot close]]

/\
[[open not]] [[hot close]]
N N

[[open]] [[not]] [fhot]] [[close]]

open not hot close



Nonterminal for each substring

hot implies cold close

@
o0




Nonterminal for each cluster

ia




Productions

Observation
If w=u-v then [w] 2 [u]-[v]



Productions

Observation
If w=u-v then [w] 2 [u]-[v]

Add production
[[w]] = [[u]][v]]



Productions

Observation
If w=u-v then [w] 2 [u]-[v]

Add production
[[w]] = [[u]][v]]

Consequence
If L is substitutable, then

L(G, [[w]]) € [w]

L(G)CL



Theorem [Clark and Eyraud(2007)]

» If the language is a substitutable context-free language, then
the hypothesis grammar will converge to a correct grammar.

» Efficient; provably correct



Theorem [Clark and Eyraud(2007)]

» If the language is a substitutable context-free language, then
the hypothesis grammar will converge to a correct grammar.

» Efficient; provably correct

But the grammar may be different for each input data set!



open not hot close

NT11 NT11
NT9 NT5 NT9 NT5
NT13 NT2 close NTO NT11 close
\ N RN
open NT15 NT11 NT13 NT15 hot
I |
not hot op‘en not
NT11 NT11 NT11
NTO NT8 NT13 NT10 NT13 NT10
]
NT13 NT15 NT11 NT5 open NT15 NT8 open NT2 NT5
I N N N
open  not hot  close not NT11 NT5 NT15 NT11 close

hot  close not hot



Larger data set: 92 nonterminals, 435 Productions

(€]
o - =)
Gomomima >
=
)

:ﬁ—

= | =
== \ =

sl —




open open hot and cold close and open rain implies snow

close close
327204 parses

NT25
NT55 NT53
NT76 NT53 clc‘)se
///\
NT61 NTS close
op‘en NT71 NT56
NT13 NT61 NT20 NT25
NT55 NT10 open NT25 NT54 san
}{ N7"25 NT"@E% ra‘in imp‘lies

NTT2 NT54 cold close and

NT61 NT25 and

open  hot
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Strong Learning



Strong Learning

Target class of grammars

G is some set of context-free grammars.
Pick some grammar G, € G

Weak learning

We receive examples wy, ..., wp, ..

We produce a series of hypotheses Gl, e, Gpy .

We want G, to converge to some grammar G such that
L(G) = L(G,)



Strong Learning

Target class of grammars

G is some set of context-free grammars.
Pick some grammar G, € G

Strong learning
We receive examples wy, ..., w,,..
We produce a series of hypotheses Gl, ey, Gpy .l

We want G, to converge to some grammar G such that
G =G,



Inaccurate clusters

e
o




Correct congruence classes

)




Myhill-Nerode Theorem

A language has a finite number of congruence classes if and only if
it is regular.



Myhill-Nerode Theorem

A language has a finite number of congruence classes if and only if
it is regular.

We need some principled way of picking a finite collection of “good”
congruence classes.



hot implies

open hot and

open hot implies open hot iff




Definition

Definition

A congruence class X is composite if there are two congruence
classes Y, Z such that X = YZ.

(and neither Y nor Z is the class [A])

Definition
A congruence class X is prime if it is not composite.

The whole is greater than the sum of the parts



apen o Teald
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hot implies cold close:
open hot implies cold
open ot or cold.

en hot and cold close
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Restriction

» We only consider substitutable languages which have a finite
number of primes.

» We define nonterminals only for these primes.

Label Examples
p rain, cold, open rain and cold close
(@) open

C close
B

N

and, or, ...
not, hot or, cold and ...



Fundamental theorem of substitutable languages

Every congruence class Q can be uniquely represented as a
sequence of primes such that Q = Py ... P,



Fundamental theorem of substitutable languages

Every congruence class Q can be uniquely represented as a
sequence of primes such that Q = Py ... P,

[ntuition
If X = YZ, and we have a rule

P — QXR

then we can change it to

P — QYZR



open hot or

—
D)
©)

G




ON

=
NPC ONP

-
T

PC
NP
BPC




Productions

We need non-binary rules.

Correct productions
Po — P1 - Pk
where Po 2 P1 N Pk

Infinite number of correct productions

» N— PB

P — ONPC

P — OPBPC

P — ONONPCC

v

v

v



O P BPC






Productions

Valid productions

» Correct productions where the right hand side does not
contain the right hand side of a valid production.

» If there are n primes then there are at most n? valid
productions.

Examples

> N— PB
> P — ONPC



A Strong Learning Result

Class of grammars

Gsc is the class of canonical grammars for all substitutable
languages with a finite number of primes.

Theorem [Clark(2014)]

There is an algorithm which learns Ggc
» From positive examples
» |dentification in the limit
» Strongly: converges structurally

» Using polynomial time and data



Running example

(verbatim output from implementation)

NTO

T

NT4 NT1 NTO NT?2

NI .

open NTO NT3 hot close

cold and



open open hot and cold close and open rain implies snow
close close

1 parse

NT4 NT2

| /\/\\

open NT3 NT4 NT1 NTO NT2 close

%\\\A\‘

NT4 NT1 NTO NT2 and open NTO NT3 snow close

N I

open NTO NT3 cold close rain  implies

hot and
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An Algebraic Theory of CFGs



Contexts
A context is a string with a hole:

Odr

Derivation contexts
The derivation contexts of CFGs are just string contexts:

S=c¢ INr



Definition

Filling the hole
Or® u=lur

A factorisation of a language L
C is a set of contexts; S is a set of strings

CoSclL



Context free grammars

Contexts and yields
L(G,N)={wecZ*|N=w}
C(G,N) = {IOr| S = INr}.

Nonterminals in a context-free grammar

C(G,N)® L(G,N) C L



Context free grammars

Contexts and yields
L(G,N)={wecZ*|N=w}
C(G,N)={I0Or| S = INr}.

Nonterminals in a context-free grammar
C(G,N)® L(G,N)C L

We can reverse this process and go from a collection of
decompositions back to a CFG.



Polar maps

If S is a set of strings:
S ={/0r|Vue S, lurel}
If C is a set of contexts:

C'={uex*|ViOreC, lure L}



Polar maps

If S is a set of strings:
S ={/0r|Vue S, lurel} (1)
If C is a set of contexts:
C'={uveX"|VIdOreC, lurel} (2)

> and -“ form a Galois connection between sets of strings and sets
of contexts.



Closed sets of strings

» ->9is a closure operator on the sets of strings;

» X" = Y"” is a CIS-congruence;

» L is always closed.



Closed sets of strings

» ->9is a closure operator on the sets of strings;

» X" = Y"” is a CIS-congruence;

» L is always closed.

The syntactic concept lattice

The set of all closed sets of strings form a complete idempotent
semiring: B(L).

(A generalisation of the syntactic monoid; the collection of maximal
decompositions into strings and contexts.)



L is regular iff B(L) is finite

BN

b(a a(ba)*
\\
{e}
|
0



Recognising a language

Definition
We say that a CIS B recognizes L if there is a surjective morphism
h from P(X*) — B such that h*(h(L)) = L, where h* is the

residual of h.



Recognising a language

Definition

We say that a CIS B recognizes L if there is a surjective morphism
h from P(X*) — B such that h*(h(L)) = L, where h* is the
residual of h.

Given a CIS B and a homomorphism h: P(¥X*) — B, we can define
a new grammar ¢,(G) by merging nonterminals M, N if

h(L(G, M)) = h(L(G, N))



Theorem
Let G be a CFG over X and h a homomorphism h: P(X*) — B.
Then

» ¢p(G) defines the same language as G iff
» B recognizes L through h



Theorem

Let G be a CFG over X and h a homomorphism h: P(X*) — B.
Then

» ¢p(G) defines the same language as G iff
» B recognizes L through h

Uniqueness
There is a unique 'smallest’ CIS that recognizes L: which is B(L).



The universal morphism

B(L) 1

P(x¥) L /




The universal cfg-morphism

¢: N — L(G,N)

|l S
T




[Clark(2013)]

Mergeable nonterminals
If
L(G, M) = L(G,N)
then we can merge M and N without increasing the language
defined by G,



[Clark(2013)]

Mergeable nonterminals
If
L(G, M) = L(G,N)

then we can merge M and N without increasing the language
defined by G,

Minimal grammars correspond to maximal factorisations

A grammar without mergable nonterminals will have nonterminals
that correspond to closed sets of strings.



Conclusion

» We can learn context-free grammars weakly decomposing
strings into contexts and substrings.

» Minimal grammars will correspond to maximal decompositions.
» We can learn grammars strongly by identifying structure in
some canonical algebras associated with the languages:
» the syntactic monoid
» the syntactic concept lattice.
» The same approach applies to Multiple Context-Free
Grammars, a mildly context-sensitive grammar formalism.
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