Semantics of probabilistic programming

Fredrik Dahlqvist

Work in progress with Dexter Kozen and help from Vincent Danos, llias Garnier and Alexandra
Silva

London, 15 November 2018



Warning

WORK

IN PROGRESS

L= {
. U
o




What is probabilistic programming?

(defquery example
(let [x (sample (mormal 0 1))]
(observe (normal x 1) 0.5)

(> x 1))
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Operational semantics Denotational semantics
B Step-by-step execution of the B Mathematical meaning of the
program program
B Sampling actually occurs B Sampling = distribution
B Statistical properties emerge B Statistical properties
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&

Probabilistic Adequacy



Denotational Semantics



Denotational semantics [Kozen '81]: the main ideas

B Probabilistic programs transform probabilities.



Denotational semantics [Kozen '81]: the main ideas

B Probabilistic programs transform probabilities.
B Probabilities are measures. Measures form vector spaces

M(X) = all finite’ measures



Denotational semantics [Kozen '81]: the main ideas

B Probabilistic programs transform probabilities.
B Probabilities are measures. Measures form vector spaces

M(X) = all finite’ measures
B Probabilistic programs transform measures linearly

M(X) 25 M(X)



Denotational semantics [Kozen '81]: the main ideas

B Probabilistic programs transform probabilities.
B Probabilities are measures. Measures form vector spaces

M(X) = all finite’ measures
B Probabilistic programs transform measures linearly
M(X) 25 M(X)

B Measures are normed (Banach space) = can study convergence.



Denotational semantics [Kozen '81]: the main ideas

B Probabilistic programs transform probabilities.
B Probabilities are measures. Measures form vector spaces

M(X) = all finite’ measures
B Probabilistic programs transform measures linearly
M(X) 25 M(X)

B Measures are normed (Banach space) = can study convergence.
B Measures are (partially) ordered = can study fixpoints (while loops)



Denotational semantics [Kozen '81]: the main ideas

B Probabilistic programs transform probabilities.
B Probabilities are measures. Measures form vector spaces

M(X) = all finite’ measures
B Probabilistic programs transform measures linearly
M(X) 25 M(X)

B Measures are normed (Banach space) = can study convergence.
B Measures are (partially) ordered = can study fixpoints (while loops)
B Measures belong to a monoidal closed category = higher-order.
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F0.5:real
x:realk x:=0.5:real




Assignments
{ B F0.5:real
}X =0.5 x:real b x:=0.5:real
H]] —R [0.8]=1—805 [[real]] - MR
[real] = MR [real] = MR

= (R) o5
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Some initial observations

B Ground types T (e.g. real) are interpreted by M[T]

B Very similar to ‘flat domains’ in Scott’s denotational semantics
B M turns any partial map into a total linear operator

B Again, similar to monotone maps between ‘flat domains’ and

B Rule of thumb: denotational semantics will be one M-level up
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Sampling
{

x:=sample (normal (0,1))
}

F normal(0,1):Mreal
 sample(normal(0, 1)) : real

x :real I x ;= sample(normal(0, 1)) : real

1'—}53\[(0'1)

[]=R [M real] = M2R

d
[sample(normal(0,1))] Lw—ﬂsﬂj‘m) X dp(x)

[real] = MR
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Some observation about sampling

B The transformation MV — V is completely generic: it is given by the
Bochner integral 1 — IB+(V) x du(x)

B Denotationally [sample(normal(0, 1))] is proportional to N(0, 1) as
expected.

B Bochner integrals are an essential part of the mathematical universe
allowing higher-order functions.
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Higher-order functions

{
fn x. normal(x,y)

}

x:real,y:real F normal(x,y):Mreal

y:real I fn x. normal(x,y): real — Mreal

[real] ® [real] = MR ® MR [M real] = M2R

MR £, (MR, M2R)

[£fn x. normal(x,y)]
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A computer science perspective on tensor products
B Given a map f in two arguments U, V into W, we want to curry
U—I[v,Wl V= I[UW

B These morphisms must be linear transformations
B This means our map f is linear in U and V separately (bilinear)

FAU+ AU’ v) = Af(u, v) + AU, v)
B This does not mean that it is jointly linear:
f(A(u, v)) = f(Au, Av) = AMf(u, Av) = N2f(u, v)

B Sof:Ux V — Wis notlinear!
EBUT:7: U@V — Wis.
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Denotational semantics: conclusion

B Typed language accommodating many important classical and
probabilistic constructs

B Very powerful semantics in terms of ordered Banach space
B Advanced but completely mainstream mathematics

B Many ‘moral’ similarities with Scott’s semantics
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Operational semantics: discrete case

{
x=sample (bernoulli (0.2))
}

Lx— 0] F1

T x := sample(bernoulli(0.5))

x—1lk-1
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Operational semantics: continuous case

{
x=sample (normal (0,1))
}

T[x — 3.1416] F 1

yy

Y+ x:= sample(normal(0, 1)

m

Tlx — —1.4142] 1
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Operational semantics: continuous case

{
x=sample (normal (0,1))
}
(I, seed) - x = sample(normal(0, 1)) {unit
(Z[x — [normal(0, 1)](seed)],seed + 1) F 1
where

[normal(0,1)] : N — R

with certain properties
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Probabilistic adequacy: general aim

H Ideally, the step-by-step execution of the model ‘agrees’ with its
intended mathematical meaning

B But what does it mean for a probabilistic program?
B Operationally: program = empirical process.
B Empirical distribution for A C [Z]

Po(A) = 1 > I4(X)
i=1

B Probabilistic adequacy:

Does the empirical distribution converge to the denotational
semantics? If yes, how fast?
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Concentration of measure — an example

B Consider the hamming cube {0, 1}"

B Metric space with d((xy, ..., Xn), (Y1, ., yn)) =+ j(xi+y; mod2)
B Measured space with counting measure p(A) = 2—HA
W Consider the function f: {0, 1} = R, (x1,..., X)) = = 3, x;
B The median of fis 3: p{x | f(x) < 3} = u{x | f(x) > 3}

B How far are we away from the median on average?
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Concentration of measure — an example

W Fore = 1‘—0 this is what w(A¢(¢), n) varies as n increases:

1.0 T T T T T

04F

1] 10 20 30 40 a0

B This is a general pattern in metric measured spaces
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Probabilistic adequacy and concentration of measure

{
x=sample (bernoulli (0.5))

}

B Denotationally [x = sample(bernoulli(0.5))](n) o Bern(0.5)
B The function f computes the empirical probability of £ = [x — 1]

B The convergence of 1(Af)(e, n) given above shows that the empirical
probability (multiple runs of the program) converges with the
denotational semantics.

B Moreover, the rate of convergence can also be bounded (1/n)



Thank you.



