

Semantics of probabilistic programming

Fredrik Dahlqvist

Work in progress with Dexter Kozen and help from Vincent Danos, Ilias Garnier and Alexandra Silva

London, 15 November 2018

Warning

What is probabilistic programming?

```
(defquery example
 (let [x (sample (normal 0 1))]
  (observe (normal x 1) 0.5)
  (> x 1)))
```


Operational semantics

Denotational semantics

Operational semantics

Denotational semantics

Step-by-step execution of the program

Operational semantics

- Step-by-step execution of the program
- Sampling *actually* occurs

Denotational semantics

Operational semantics

- Step-by-step execution of the program
- Sampling *actually* occurs
- Statistical properties emerge after many 'runs'

Denotational semantics

Operational semantics

- Step-by-step execution of the program
- Sampling *actually* occurs
- Statistical properties emerge after many 'runs'

Denotational semantics

Mathematical meaning of the program

Operational semantics

- Step-by-step execution of the program
- Sampling *actually* occurs
- Statistical properties emerge after many 'runs'

Denotational semantics

- Mathematical meaning of the program
- Sampling = distribution

Operational semantics

- Step-by-step execution of the program
- Sampling *actually* occurs
- Statistical properties emerge after many 'runs'

Denotational semantics

- Mathematical meaning of the program
- Sampling = distribution
- Statistical properties immediately available

Operational semantics

- Step-by-step execution of the program
- Sampling *actually* occurs
- Statistical properties emerge after many 'runs'

Denotational semantics

- Mathematical meaning of the program
- Sampling = distribution
- Statistical properties immediately available

⇔ Probabilistic Adequacy

Denotational Semantics

Probabilistic programs transform probabilities.

- Probabilistic programs transform probabilities.
- Probabilities are measures. Measures form vector spaces

 $\mathcal{M}(X) =$ all 'finite' measures

- Probabilistic programs transform probabilities.
- Probabilities are measures. Measures form vector spaces

 $\mathcal{M}(X) =$ all 'finite' measures

Probabilistic programs transform measures *linearly*

$$\mathcal{M}(X) \xrightarrow{p} \mathcal{M}(X)$$

- Probabilistic programs transform probabilities.
- Probabilities are measures. Measures form vector spaces

 $\mathcal{M}(X) =$ all 'finite' measures

Probabilistic programs transform measures *linearly*

$$\mathcal{M}(X) \stackrel{\mathbb{P}}{\longrightarrow} \mathcal{M}(X)$$

Measures are normed (Banach space) \Rightarrow can study convergence.

- Probabilistic programs transform probabilities.
- Probabilities are measures. Measures form vector spaces

 $\mathcal{M}(X) =$ all 'finite' measures

Probabilistic programs transform measures *linearly*

$$\mathcal{M}(X) \stackrel{p}{\longrightarrow} \mathcal{M}(X)$$

Measures are normed (Banach space) ⇒ can study convergence.
 Measures are (partially) ordered ⇒ can study fixpoints (while loops)

- Probabilistic programs transform probabilities.
- Probabilities are measures. Measures form vector spaces

 $\mathcal{M}(X) =$ all 'finite' measures

Probabilistic programs transform measures *linearly*

$$\mathcal{M}(\mathbf{X}) \stackrel{\mathrm{p}}{\longrightarrow} \mathcal{M}(\mathbf{X})$$

Measures are normed (Banach space) ⇒ can study convergence.
 Measures are (partially) ordered ⇒ can study fixpoints (while loops)
 Measures belong to a *monoidal closed category* ⇒ higher-order.

Assignments

{ x:=0.5 }

Assignments

{ x:=0.5 }

 $\frac{\vdash 0.5: \texttt{real}}{\texttt{x}:\texttt{real} \vdash \texttt{x} := 0.5:\texttt{real}}$

Assignments

{ x := 0.5} (-0.5: real) $x : real \vdash x := 0.5: real$

$$[\![\,]\!] = \mathbb{R} \xrightarrow{ [\![0.5]\!] = 1 \mapsto \delta_{0.5} } [\![\texttt{real}]\!] = \mathcal{M}\mathbb{R}$$

$$[\![\texttt{real}]\!] = \mathcal{M}\mathbb{R} \xrightarrow[\mu \mapsto \mu(\mathbb{R}) \delta_{0.5}} [\![\texttt{real}]\!] = \mathcal{M}\mathbb{R}$$

Ground types T (e.g. real) are interpreted by $\mathcal{M}[\![T]\!]$

■ Ground types T (e.g. real) are interpreted by $\mathcal{M}[\![T]\!]$

Very similar to 'flat domains' in Scott's denotational semantics

- Ground types T (e.g. real) are interpreted by $\mathcal{M}[\![T]\!]$
- Very similar to 'flat domains' in Scott's denotational semantics
- \blacksquare \mathcal{M} turns any partial map into a total linear operator

- Ground types T (e.g. real) are interpreted by $\mathcal{M}[\![T]\!]$
- Very similar to 'flat domains' in Scott's denotational semantics
- $\blacksquare \mathcal{M}$ turns any partial map into a total linear operator
- Again, similar to monotone maps between 'flat domains' and

- Ground types T (e.g. real) are interpreted by $\mathcal{M}[\![T]\!]$
- Very similar to 'flat domains' in Scott's denotational semantics
- $\blacksquare \mathcal{M}$ turns any partial map into a total linear operator
- Again, similar to monotone maps between 'flat domains' and
- Rule of thumb: denotational semantics will be one \mathcal{M} -level up

Sampling

```
{
    x:=sample(normal(0,1))
}
```


Sampling

```
{
    x:=sample(normal(0,1))
}
```

 $\frac{\vdash \texttt{normal}(0,1):\texttt{M}\texttt{ real}}{\vdash \texttt{sample}(\texttt{normal}(0,1)):\texttt{real}}$ x:real \vdash x := sample(\texttt{normal}(0,1)):real

Sampling

```
x:=sample(normal(0,1))
}
                                                             \vdash normal(0, 1) : M real
                                                       \vdash sample(normal(0, 1)) : real
                                            x : real \vdash x := sample(normal(0, 1)) : real
[\![\,]\!] = \mathbb{R} \xrightarrow{1 \mapsto \delta_{\mathcal{N}(0,1)}} [\![\mathrm{M}\, \texttt{real}]\!] = \mathcal{M}^2 \mathbb{R}
```


The transformation $\mathcal{M}V \to V$ is completely generic: it is given by the *Bochner integral* $\mu \mapsto \int_{B^+(V)} x \ d\mu(x)$

- The transformation $\mathcal{M}V \to V$ is completely generic: it is given by the *Bochner integral* $\mu \mapsto \int_{B^+(V)} x \ d\mu(x)$
- Denotationally [[sample(normal(0, 1))]] is proportional to N(0, 1) as expected.

- The transformation $\mathcal{M}V \to V$ is completely generic: it is given by the *Bochner integral* $\mu \mapsto \int_{B^+(V)} x \ d\mu(x)$
- Denotationally [[sample(normal(0, 1))]] is proportional to N(0, 1) as expected.
- Bochner integrals are an essential part of the mathematical universe allowing higher-order functions.

Higher-order functions

```
{
  fn x. normal(x,y)
}
```


Higher-order functions

 $\begin{array}{c} \texttt{x:real},\texttt{y:real} \vdash \texttt{normal}(\texttt{x},\texttt{y}) : \texttt{M real} \\ \hline \texttt{y:real} \vdash \texttt{fn} \texttt{x}. \texttt{normal}(\texttt{x},\texttt{y}) : \texttt{real} \rightarrow \texttt{M real} \end{array}$

Higher-order functions

```
{
  fn x. normal(x,y)
}
```

 $\frac{\texttt{x:real},\texttt{y:real} \vdash \texttt{normal}(\texttt{x},\texttt{y}):\texttt{M} \text{ real}}{\texttt{y:real} \vdash \texttt{fn} \texttt{x}. \texttt{normal}(\texttt{x},\texttt{y}):\texttt{real} \rightarrow \texttt{M} \text{ real}}$

 $\llbracket \texttt{real} \rrbracket \otimes \llbracket \texttt{real} \rrbracket = \mathcal{M} \mathbb{R} \otimes \mathcal{M} \mathbb{R} \longrightarrow \llbracket \texttt{M} \, \texttt{real} \rrbracket = \mathcal{M}^2 \mathbb{R}$

$$\mathfrak{M}\mathbb{R} \xrightarrow{[[fn x. normal(x,y)]]} > \mathcal{L}_{r}(\mathfrak{M}\mathbb{R}, \mathfrak{M}^{2}\mathbb{R})$$

Given a map *f* in two arguments *U*, *V* into *W*, we want to *curry*

 $U \rightarrow [V, W] \qquad V \rightarrow [U, W]$

Given a map f in two arguments U, V into W, we want to curry

$$U \rightarrow [V, W] \qquad V \rightarrow [U, W]$$

These morphisms must be linear transformations

Given a map f in two arguments U, V into W, we want to curry

$$U \rightarrow [V, W] \qquad V \rightarrow [U, W]$$

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

$$f(\lambda u + \lambda' u', v) = \lambda f(u, v) + \lambda' f(u', v)$$

Given a map f in two arguments U, V into W, we want to curry

$$U \rightarrow [V, W] \qquad V \rightarrow [U, W]$$

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

$$f(\lambda u + \lambda' u', v) = \lambda f(u, v) + \lambda' f(u', v)$$

This does not mean that it is jointly linear:

$$f(\lambda(u, v)) = f(\lambda u, \lambda v) = \lambda f(u, \lambda v) = \lambda^2 f(u, v)$$

Given a map f in two arguments U, V into W, we want to curry

$$U \rightarrow [V, W] \qquad V \rightarrow [U, W]$$

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

$$f(\lambda u + \lambda' u', v) = \lambda f(u, v) + \lambda' f(u', v)$$

This does not mean that it is jointly linear:

$$f(\lambda(u, v)) = f(\lambda u, \lambda v) = \lambda f(u, \lambda v) = \lambda^2 f(u, v)$$

So $f: U \times V \rightarrow W$ is *not* linear!

Given a map f in two arguments U, V into W, we want to curry

$$U \rightarrow [V, W] \qquad V \rightarrow [U, W]$$

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

$$f(\lambda u + \lambda' u', v) = \lambda f(u, v) + \lambda' f(u', v)$$

This does not mean that it is jointly linear:

$$f(\lambda(u, v)) = f(\lambda u, \lambda v) = \lambda f(u, \lambda v) = \lambda^2 f(u, v)$$

So $f: U \times V \to W$ is *not* linear! BUT: $\hat{f}: U \otimes V \to W$ is.

Typed language accommodating many important classical and probabilistic constructs

- Typed language accommodating many important classical and probabilistic constructs
- Very powerful semantics in terms of ordered Banach space

- Typed language accommodating many important classical and probabilistic constructs
- Very powerful semantics in terms of ordered Banach space
- Advanced but completely mainstream mathematics

- Typed language accommodating many important classical and probabilistic constructs
- Very powerful semantics in terms of ordered Banach space
- Advanced but completely mainstream mathematics
- Many 'moral' similarities with Scott's semantics

Operational Semantics

Operational semantics: discrete case

```
{
    x=sample(bernoulli(0.2))
}
```


Operational semantics: discrete case

```
{
 x=sample(bernoulli(0.2))
}
                                                                    \Sigma[\texttt{x}\mapsto 0]\vdash 1
                                                   ↓0.2,unit
             \Sigma \vdash x := sample(bernoulli(0.5))
                                                   ↓0.8,unit
                                                                    \Sigma[x\mapsto 1]\vdash 1
```



```
{
    x=sample(normal(0,1))
}
```



```
{
  x=sample(normal(0,1))
}
                                                                           \Sigma[x \mapsto 3.1416] \vdash 1
                                                           ↓0,unit
             \Sigma \vdash x := \texttt{sample}(\texttt{normal}(0, 1))
                                                           \psi_{0,\text{unit}}
                                                                          \Sigma[\mathbf{x}\mapsto -1.4142]\vdash 1
```



```
{
    x=sample(normal(0,1))
}
```



```
{
    x=sample(normal(0,1))
}
```

$$(\Sigma, \text{seed}) \vdash x = \text{sample}(\text{normal}(0, 1)) \Downarrow_{\text{unit}}$$

 $(\Sigma[x \mapsto [\text{normal}(0, 1)]](\text{seed})], \text{seed} + 1) \vdash 1$

where

```
[\![\texttt{normal}(0,1)]\!]:\mathbb{N}\to\mathbb{R}
```

with certain properties

Probabilistic Adequacy

Ideally, the step-by-step execution of the model 'agrees' with its intended mathematical meaning

- Ideally, the step-by-step execution of the model 'agrees' with its intended mathematical meaning
- But what does it mean for a probabilistic program?

- Ideally, the step-by-step execution of the model 'agrees' with its intended mathematical meaning
- But what does it mean for a probabilistic program?
- Operationally: program = empirical process.
- Empirical distribution for $A \subseteq \llbracket \Sigma \rrbracket$

$$\mathbb{P}_n(A) = \frac{1}{n} \sum_{i=1}^n I_A(X_i)$$

- Ideally, the step-by-step execution of the model 'agrees' with its intended mathematical meaning
- But what does it mean for a probabilistic program?
- Operationally: program = empirical process.
- Empirical distribution for $A \subseteq \llbracket \Sigma \rrbracket$

$$\mathbb{P}_n(A) = \frac{1}{n} \sum_{i=1}^n I_A(X_i)$$

Probabilistic adequacy:

Does the empirical distribution converge to the denotational semantics? If yes, how fast?

Consider the hamming cube $\{0, 1\}^n$

- Consider the hamming cube $\{0, 1\}^n$
- Metric space with $d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \frac{1}{n} \sum_i (x_i + y_i \mod 2)$

- Consider the hamming cube $\{0, 1\}^n$
- Metric space with $d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \frac{1}{n} \sum_i (x_i + y_i \mod 2)$

Measured space with counting measure $\mu(A) = \frac{\#A}{2^n}$

- Consider the hamming cube $\{0, 1\}^n$
- Metric space with $d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \frac{1}{n} \sum_i (x_i + y_i \mod 2)$
 - Measured space with counting measure $\mu(A) = \frac{\#A}{2^n}$
- Consider the function $f : \{0, 1\}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto \frac{1}{n} \sum_i x_i$

- Consider the hamming cube $\{0, 1\}^n$
- Metric space with $d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \frac{1}{n} \sum_i (x_i + y_i \mod 2)$

Measured space with counting measure $\mu(A) = \frac{\#A}{2^n}$

- Consider the function $f: \{0, 1\}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto \frac{1}{n} \sum_i x_i$
- The median of *f* is $\frac{1}{2}$: $\mu\{x \mid f(x) \leq \frac{1}{2}\} = \mu\{x \mid f(x) \geq \frac{1}{2}\}$

- Consider the hamming cube $\{0, 1\}^n$
- Metric space with $d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \frac{1}{n} \sum_i (x_i + y_i \mod 2)$
 - Measured space with counting measure $\mu(A) = \frac{\#A}{2^n}$
- Consider the function $f : \{0, 1\}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto \frac{1}{n} \sum_i x_i$
- The median of *f* is $\frac{1}{2}$: $\mu\{x \mid f(x) \leq \frac{1}{2}\} = \mu\{x \mid f(x) \geq \frac{1}{2}\}$
- How far are we away from the median on average?

$$A_{f}(\varepsilon, n) := \left\{ (x_{1}, \dots, x_{n}) \mid \left| f(x_{1}, \dots, x_{n}) - \frac{1}{2} \right| < \varepsilon \right\}$$
$$\mu(A_{f}(\varepsilon, n)) = \frac{1}{2^{n}} \sum_{k=\lceil n\varepsilon \rceil}^{\lfloor n\varepsilon \rfloor} \binom{n}{k}$$

For $\varepsilon = \frac{1}{10}$ this is what $\mu(A_f(\varepsilon), n)$ varies as *n* increases: 1.0 0.8 0.6 0.4 0.2 0.0 10 20 30 40 50 0

Probabilistic adequacy and concentration of measure

```
{
    x=sample(bernoulli(0.5))
}
```


Probabilistic adequacy and concentration of measure

```
{
  x=sample(bernoulli(0.5))
}
```

Denotationally $[x = sample(bernoulli(0.5))](\mu) \propto Bern(0.5)$

Probabilistic adequacy and concentration of measure

```
{
    x=sample(bernoulli(0.5))
}
```

- Denotationally $[x = sample(bernoulli(0.5))](\mu) \propto Bern(0.5)$
- The function *f* computes the empirical probability of $\Sigma = [x \mapsto 1]$

Probabilistic adequacy and concentration of measure

```
{
    x=sample(bernoulli(0.5))
}
```

- Denotationally $[x = sample(bernoulli(0.5))](\mu) \propto \textit{Bern}(0.5)$
- The function *f* computes the empirical probability of $\Sigma = [x \mapsto 1]$
- The convergence of $\mu(A_f)(\varepsilon, n)$ given above shows that the empirical probability (multiple runs of the program) converges with the denotational semantics.

Probabilistic adequacy and concentration of measure

```
{
    x=sample(bernoulli(0.5))
}
```

- Denotationally $[x = sample(bernoulli(0.5))](\mu) \propto \textit{Bern}(0.5)$
- The function *f* computes the empirical probability of $\Sigma = [x \mapsto 1]$
- The convergence of $\mu(A_f)(\varepsilon, n)$ given above shows that the empirical probability (multiple runs of the program) converges with the denotational semantics.
- Moreover, the rate of convergence can also be bounded (\sqrt{n})

Thank you.