
Semantics of probabilistic programming

Fredrik Dahlqvist

Work in progress with Dexter Kozen and help from Vincent Danos, Ilias Garnier and Alexandra
Silva

London, 15 November 2018

Warning

What is probabilistic programming?

(defquery example

(let [x (sample (normal 0 1))]

(observe (normal x 1) 0.5)

(> x 1)))

Denotational and Operational semantics

Operational semantics

Step-by-step execution of the
program

Sampling actually occurs

Statistical properties emerge
after many ‘runs’

Denotational semantics

Mathematical meaning of the
program

Sampling = distribution

Statistical properties
immediately available

⇔
Probabilistic Adequacy

Denotational and Operational semantics

Operational semantics

Step-by-step execution of the
program

Sampling actually occurs

Statistical properties emerge
after many ‘runs’

Denotational semantics

Mathematical meaning of the
program

Sampling = distribution

Statistical properties
immediately available

⇔
Probabilistic Adequacy

Denotational and Operational semantics

Operational semantics

Step-by-step execution of the
program

Sampling actually occurs

Statistical properties emerge
after many ‘runs’

Denotational semantics

Mathematical meaning of the
program

Sampling = distribution

Statistical properties
immediately available

⇔
Probabilistic Adequacy

Denotational and Operational semantics

Operational semantics

Step-by-step execution of the
program

Sampling actually occurs

Statistical properties emerge
after many ‘runs’

Denotational semantics

Mathematical meaning of the
program

Sampling = distribution

Statistical properties
immediately available

⇔
Probabilistic Adequacy

Denotational and Operational semantics

Operational semantics

Step-by-step execution of the
program

Sampling actually occurs

Statistical properties emerge
after many ‘runs’

Denotational semantics

Mathematical meaning of the
program

Sampling = distribution

Statistical properties
immediately available

⇔
Probabilistic Adequacy

Denotational and Operational semantics

Operational semantics

Step-by-step execution of the
program

Sampling actually occurs

Statistical properties emerge
after many ‘runs’

Denotational semantics

Mathematical meaning of the
program

Sampling = distribution

Statistical properties
immediately available

⇔
Probabilistic Adequacy

Denotational and Operational semantics

Operational semantics

Step-by-step execution of the
program

Sampling actually occurs

Statistical properties emerge
after many ‘runs’

Denotational semantics

Mathematical meaning of the
program

Sampling = distribution

Statistical properties
immediately available

⇔
Probabilistic Adequacy

Denotational and Operational semantics

Operational semantics

Step-by-step execution of the
program

Sampling actually occurs

Statistical properties emerge
after many ‘runs’

Denotational semantics

Mathematical meaning of the
program

Sampling = distribution

Statistical properties
immediately available

⇔
Probabilistic Adequacy

Denotational Semantics

Denotational semantics [Kozen ’81]: the main ideas

Probabilistic programs transform probabilities.

Probabilities are measures. Measures form vector spaces

M(X) = all ‘finite’ measures

Probabilistic programs transform measures linearly

M(X)
p−→M(X)

Measures are normed (Banach space)⇒ can study convergence.

Measures are (partially) ordered⇒ can study fixpoints (while loops)

Measures belong to a monoidal closed category⇒ higher-order.

Denotational semantics [Kozen ’81]: the main ideas

Probabilistic programs transform probabilities.

Probabilities are measures. Measures form vector spaces

M(X) = all ‘finite’ measures

Probabilistic programs transform measures linearly

M(X)
p−→M(X)

Measures are normed (Banach space)⇒ can study convergence.

Measures are (partially) ordered⇒ can study fixpoints (while loops)

Measures belong to a monoidal closed category⇒ higher-order.

Denotational semantics [Kozen ’81]: the main ideas

Probabilistic programs transform probabilities.

Probabilities are measures. Measures form vector spaces

M(X) = all ‘finite’ measures

Probabilistic programs transform measures linearly

M(X)
p−→M(X)

Measures are normed (Banach space)⇒ can study convergence.

Measures are (partially) ordered⇒ can study fixpoints (while loops)

Measures belong to a monoidal closed category⇒ higher-order.

Denotational semantics [Kozen ’81]: the main ideas

Probabilistic programs transform probabilities.

Probabilities are measures. Measures form vector spaces

M(X) = all ‘finite’ measures

Probabilistic programs transform measures linearly

M(X)
p−→M(X)

Measures are normed (Banach space)⇒ can study convergence.

Measures are (partially) ordered⇒ can study fixpoints (while loops)

Measures belong to a monoidal closed category⇒ higher-order.

Denotational semantics [Kozen ’81]: the main ideas

Probabilistic programs transform probabilities.

Probabilities are measures. Measures form vector spaces

M(X) = all ‘finite’ measures

Probabilistic programs transform measures linearly

M(X)
p−→M(X)

Measures are normed (Banach space)⇒ can study convergence.

Measures are (partially) ordered⇒ can study fixpoints (while loops)

Measures belong to a monoidal closed category⇒ higher-order.

Denotational semantics [Kozen ’81]: the main ideas

Probabilistic programs transform probabilities.

Probabilities are measures. Measures form vector spaces

M(X) = all ‘finite’ measures

Probabilistic programs transform measures linearly

M(X)
p−→M(X)

Measures are normed (Banach space)⇒ can study convergence.

Measures are (partially) ordered⇒ can study fixpoints (while loops)

Measures belong to a monoidal closed category⇒ higher-order.

Assignments

{

x:=0.5

}

Assignments

{

x:=0.5

}

` 0.5 : real
x : real ` x := 0.5 : real

Assignments

{

x:=0.5

}

` 0.5 : real
x : real ` x := 0.5 : real

J K = R
J0.5K=1 7→δ0.5 // JrealK = MR

JrealK = MR
µ7→µ(R)δ0.5

// JrealK = MR

Some initial observations

Ground types T (e.g. real) are interpreted by MJTK

Very similar to ‘flat domains’ in Scott’s denotational semantics

M turns any partial map into a total linear operator

Again, similar to monotone maps between ‘flat domains’ and

Rule of thumb: denotational semantics will be one M-level up

Some initial observations

Ground types T (e.g. real) are interpreted by MJTK

Very similar to ‘flat domains’ in Scott’s denotational semantics

M turns any partial map into a total linear operator

Again, similar to monotone maps between ‘flat domains’ and

Rule of thumb: denotational semantics will be one M-level up

Some initial observations

Ground types T (e.g. real) are interpreted by MJTK

Very similar to ‘flat domains’ in Scott’s denotational semantics

M turns any partial map into a total linear operator

Again, similar to monotone maps between ‘flat domains’ and

Rule of thumb: denotational semantics will be one M-level up

Some initial observations

Ground types T (e.g. real) are interpreted by MJTK

Very similar to ‘flat domains’ in Scott’s denotational semantics

M turns any partial map into a total linear operator

Again, similar to monotone maps between ‘flat domains’ and

Rule of thumb: denotational semantics will be one M-level up

Some initial observations

Ground types T (e.g. real) are interpreted by MJTK

Very similar to ‘flat domains’ in Scott’s denotational semantics

M turns any partial map into a total linear operator

Again, similar to monotone maps between ‘flat domains’ and

Rule of thumb: denotational semantics will be one M-level up

Some initial observations

Ground types T (e.g. real) are interpreted by MJTK

Very similar to ‘flat domains’ in Scott’s denotational semantics

M turns any partial map into a total linear operator

Again, similar to monotone maps between ‘flat domains’ and

Rule of thumb: denotational semantics will be one M-level up

Sampling

{

x:= sample(normal (0 ,1))

}

Sampling

{

x:= sample(normal (0 ,1))

}

` normal(0, 1) : M real

` sample(normal(0, 1)) : real
x : real ` x := sample(normal(0, 1)) : real

Sampling

{

x:= sample(normal (0 ,1))

}

` normal(0, 1) : M real

` sample(normal(0, 1)) : real
x : real ` x := sample(normal(0, 1)) : real

J K = R

Jsample(normal(0,1))K
''

1 7→δN(0,1) // JM realK = M2R

µ7→
∫

B+(MR) x dµ(x)

��
JrealK = MR

Some observation about sampling

The transformation MV → V is completely generic: it is given by the
Bochner integral µ 7→

∫
B+(V) x dµ(x)

Denotationally Jsample(normal(0, 1))K is proportional to N(0, 1) as
expected.

Bochner integrals are an essential part of the mathematical universe
allowing higher-order functions.

Some observation about sampling

The transformation MV → V is completely generic: it is given by the
Bochner integral µ 7→

∫
B+(V) x dµ(x)

Denotationally Jsample(normal(0, 1))K is proportional to N(0, 1) as
expected.

Bochner integrals are an essential part of the mathematical universe
allowing higher-order functions.

Some observation about sampling

The transformation MV → V is completely generic: it is given by the
Bochner integral µ 7→

∫
B+(V) x dµ(x)

Denotationally Jsample(normal(0, 1))K is proportional to N(0, 1) as
expected.

Bochner integrals are an essential part of the mathematical universe
allowing higher-order functions.

Some observation about sampling

The transformation MV → V is completely generic: it is given by the
Bochner integral µ 7→

∫
B+(V) x dµ(x)

Denotationally Jsample(normal(0, 1))K is proportional to N(0, 1) as
expected.

Bochner integrals are an essential part of the mathematical universe
allowing higher-order functions.

Higher-order functions

{

fn x. normal(x,y)

}

Higher-order functions

{

fn x. normal(x,y)

}

x : real, y : real ` normal(x, y) : M real

y : real ` fn x. normal(x, y) : real→ M real

Higher-order functions

{

fn x. normal(x,y)

}

x : real, y : real ` normal(x, y) : M real

y : real ` fn x. normal(x, y) : real→ M real

JrealK⊗ JrealK = MR⊗MR // JM realK = M2R

MR
Jfn x. normal(x,y)K

// Lr (MR,M2R)

A computer science perspective on tensor products

Given a map f in two arguments U,V into W , we want to curry

U → [V ,W] V → [U,W]

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

f (λu + λ ′u ′, v) = λf (u, v) + λ ′f (u ′, v)

This does not mean that it is jointly linear:

f (λ(u, v)) = f (λu, λv) = λf (u, λv) = λ2f (u, v)

So f : U × V → W is not linear!

BUT: f̂ : U ⊗ V → W is.

A computer science perspective on tensor products

Given a map f in two arguments U,V into W , we want to curry

U → [V ,W] V → [U,W]

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

f (λu + λ ′u ′, v) = λf (u, v) + λ ′f (u ′, v)

This does not mean that it is jointly linear:

f (λ(u, v)) = f (λu, λv) = λf (u, λv) = λ2f (u, v)

So f : U × V → W is not linear!

BUT: f̂ : U ⊗ V → W is.

A computer science perspective on tensor products

Given a map f in two arguments U,V into W , we want to curry

U → [V ,W] V → [U,W]

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

f (λu + λ ′u ′, v) = λf (u, v) + λ ′f (u ′, v)

This does not mean that it is jointly linear:

f (λ(u, v)) = f (λu, λv) = λf (u, λv) = λ2f (u, v)

So f : U × V → W is not linear!

BUT: f̂ : U ⊗ V → W is.

A computer science perspective on tensor products

Given a map f in two arguments U,V into W , we want to curry

U → [V ,W] V → [U,W]

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

f (λu + λ ′u ′, v) = λf (u, v) + λ ′f (u ′, v)

This does not mean that it is jointly linear:

f (λ(u, v)) = f (λu, λv) = λf (u, λv) = λ2f (u, v)

So f : U × V → W is not linear!

BUT: f̂ : U ⊗ V → W is.

A computer science perspective on tensor products

Given a map f in two arguments U,V into W , we want to curry

U → [V ,W] V → [U,W]

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

f (λu + λ ′u ′, v) = λf (u, v) + λ ′f (u ′, v)

This does not mean that it is jointly linear:

f (λ(u, v)) = f (λu, λv) = λf (u, λv) = λ2f (u, v)

So f : U × V → W is not linear!

BUT: f̂ : U ⊗ V → W is.

A computer science perspective on tensor products

Given a map f in two arguments U,V into W , we want to curry

U → [V ,W] V → [U,W]

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

f (λu + λ ′u ′, v) = λf (u, v) + λ ′f (u ′, v)

This does not mean that it is jointly linear:

f (λ(u, v)) = f (λu, λv) = λf (u, λv) = λ2f (u, v)

So f : U × V → W is not linear!

BUT: f̂ : U ⊗ V → W is.

A computer science perspective on tensor products

Given a map f in two arguments U,V into W , we want to curry

U → [V ,W] V → [U,W]

These morphisms must be linear transformations

This means our map f is linear in U and V separately (bilinear)

f (λu + λ ′u ′, v) = λf (u, v) + λ ′f (u ′, v)

This does not mean that it is jointly linear:

f (λ(u, v)) = f (λu, λv) = λf (u, λv) = λ2f (u, v)

So f : U × V → W is not linear!

BUT: f̂ : U ⊗ V → W is.

Denotational semantics: conclusion

Typed language accommodating many important classical and
probabilistic constructs

Very powerful semantics in terms of ordered Banach space

Advanced but completely mainstream mathematics

Many ‘moral’ similarities with Scott’s semantics

Denotational semantics: conclusion

Typed language accommodating many important classical and
probabilistic constructs

Very powerful semantics in terms of ordered Banach space

Advanced but completely mainstream mathematics

Many ‘moral’ similarities with Scott’s semantics

Denotational semantics: conclusion

Typed language accommodating many important classical and
probabilistic constructs

Very powerful semantics in terms of ordered Banach space

Advanced but completely mainstream mathematics

Many ‘moral’ similarities with Scott’s semantics

Denotational semantics: conclusion

Typed language accommodating many important classical and
probabilistic constructs

Very powerful semantics in terms of ordered Banach space

Advanced but completely mainstream mathematics

Many ‘moral’ similarities with Scott’s semantics

Operational Semantics

Operational semantics: discrete case

{

x=sample(bernoulli (0.2))

}

Operational semantics: discrete case

{

x=sample(bernoulli (0.2))

}

Σ[x 7→ 0] ` 1

Σ ` x := sample(bernoulli(0.5))

⇓0.2,unit
44

⇓0.8,unit **
Σ[x 7→ 1] ` 1

Operational semantics: continuous case

{

x=sample(normal (0 ,1))

}

Operational semantics: continuous case

{

x=sample(normal (0 ,1))

}

Σ[x 7→ 3.1416] ` 1

Σ ` x := sample(normal(0, 1)

⇓0,unit

44

⇓0,unit **

...

Σ[x 7→ −1.4142] ` 1

Operational semantics: continuous case

{

x=sample(normal (0 ,1))

}

Operational semantics: continuous case

{

x=sample(normal (0 ,1))

}

(Σ, seed) ` x = sample(normal(0, 1)) ⇓unit
(Σ[x 7→ Jnormal(0, 1)K(seed)], seed+ 1) ` 1

where
Jnormal(0, 1)K : N→ R

with certain properties

Probabilistic Adequacy

Probabilistic adequacy: general aim

Ideally, the step-by-step execution of the model ‘agrees’ with its
intended mathematical meaning

But what does it mean for a probabilistic program?

Operationally: program = empirical process.

Empirical distribution for A ⊆ JΣK

Pn(A) =
1
n

n∑
i=1

IA(Xi)

Probabilistic adequacy:

Does the empirical distribution converge to the denotational
semantics? If yes, how fast?

Probabilistic adequacy: general aim

Ideally, the step-by-step execution of the model ‘agrees’ with its
intended mathematical meaning

But what does it mean for a probabilistic program?

Operationally: program = empirical process.

Empirical distribution for A ⊆ JΣK

Pn(A) =
1
n

n∑
i=1

IA(Xi)

Probabilistic adequacy:

Does the empirical distribution converge to the denotational
semantics? If yes, how fast?

Probabilistic adequacy: general aim

Ideally, the step-by-step execution of the model ‘agrees’ with its
intended mathematical meaning

But what does it mean for a probabilistic program?

Operationally: program = empirical process.

Empirical distribution for A ⊆ JΣK

Pn(A) =
1
n

n∑
i=1

IA(Xi)

Probabilistic adequacy:

Does the empirical distribution converge to the denotational
semantics? If yes, how fast?

Probabilistic adequacy: general aim

Ideally, the step-by-step execution of the model ‘agrees’ with its
intended mathematical meaning

But what does it mean for a probabilistic program?

Operationally: program = empirical process.

Empirical distribution for A ⊆ JΣK

Pn(A) =
1
n

n∑
i=1

IA(Xi)

Probabilistic adequacy:

Does the empirical distribution converge to the denotational
semantics? If yes, how fast?

Probabilistic adequacy: general aim

Ideally, the step-by-step execution of the model ‘agrees’ with its
intended mathematical meaning

But what does it mean for a probabilistic program?

Operationally: program = empirical process.

Empirical distribution for A ⊆ JΣK

Pn(A) =
1
n

n∑
i=1

IA(Xi)

Probabilistic adequacy:

Does the empirical distribution converge to the denotational
semantics? If yes, how fast?

Concentration of measure – an example

Consider the hamming cube {0, 1}n

Metric space with d((x1, . . . , xn), (y1, . . . , yn)) =
1
n

∑
i(xi + yi mod 2)

Measured space with counting measure µ(A) = #A
2n

Consider the function f : {0, 1}n → R, (x1, . . . , xn) 7→ 1
n

∑
i xi

The median of f is 1
2 : µ{x | f (x) 6 1

2 } = µ{x | f (x) > 1
2 }

How far are we away from the median on average?

Af (ε, n) : =
{
(x1, . . . , xn) |

∣∣∣∣f (x1, . . . , xn) −
1
2

∣∣∣∣ < ε}

µ(Af (ε, n)) =
1
2n

bnεc∑
k=dnεe

(
n
k

)

Concentration of measure – an example

Consider the hamming cube {0, 1}n

Metric space with d((x1, . . . , xn), (y1, . . . , yn)) =
1
n

∑
i(xi + yi mod 2)

Measured space with counting measure µ(A) = #A
2n

Consider the function f : {0, 1}n → R, (x1, . . . , xn) 7→ 1
n

∑
i xi

The median of f is 1
2 : µ{x | f (x) 6 1

2 } = µ{x | f (x) > 1
2 }

How far are we away from the median on average?

Af (ε, n) : =
{
(x1, . . . , xn) |

∣∣∣∣f (x1, . . . , xn) −
1
2

∣∣∣∣ < ε}

µ(Af (ε, n)) =
1
2n

bnεc∑
k=dnεe

(
n
k

)

Concentration of measure – an example

Consider the hamming cube {0, 1}n

Metric space with d((x1, . . . , xn), (y1, . . . , yn)) =
1
n

∑
i(xi + yi mod 2)

Measured space with counting measure µ(A) = #A
2n

Consider the function f : {0, 1}n → R, (x1, . . . , xn) 7→ 1
n

∑
i xi

The median of f is 1
2 : µ{x | f (x) 6 1

2 } = µ{x | f (x) > 1
2 }

How far are we away from the median on average?

Af (ε, n) : =
{
(x1, . . . , xn) |

∣∣∣∣f (x1, . . . , xn) −
1
2

∣∣∣∣ < ε}

µ(Af (ε, n)) =
1
2n

bnεc∑
k=dnεe

(
n
k

)

Concentration of measure – an example

Consider the hamming cube {0, 1}n

Metric space with d((x1, . . . , xn), (y1, . . . , yn)) =
1
n

∑
i(xi + yi mod 2)

Measured space with counting measure µ(A) = #A
2n

Consider the function f : {0, 1}n → R, (x1, . . . , xn) 7→ 1
n

∑
i xi

The median of f is 1
2 : µ{x | f (x) 6 1

2 } = µ{x | f (x) > 1
2 }

How far are we away from the median on average?

Af (ε, n) : =
{
(x1, . . . , xn) |

∣∣∣∣f (x1, . . . , xn) −
1
2

∣∣∣∣ < ε}

µ(Af (ε, n)) =
1
2n

bnεc∑
k=dnεe

(
n
k

)

Concentration of measure – an example

Consider the hamming cube {0, 1}n

Metric space with d((x1, . . . , xn), (y1, . . . , yn)) =
1
n

∑
i(xi + yi mod 2)

Measured space with counting measure µ(A) = #A
2n

Consider the function f : {0, 1}n → R, (x1, . . . , xn) 7→ 1
n

∑
i xi

The median of f is 1
2 : µ{x | f (x) 6 1

2 } = µ{x | f (x) > 1
2 }

How far are we away from the median on average?

Af (ε, n) : =
{
(x1, . . . , xn) |

∣∣∣∣f (x1, . . . , xn) −
1
2

∣∣∣∣ < ε}

µ(Af (ε, n)) =
1
2n

bnεc∑
k=dnεe

(
n
k

)

Concentration of measure – an example

Consider the hamming cube {0, 1}n

Metric space with d((x1, . . . , xn), (y1, . . . , yn)) =
1
n

∑
i(xi + yi mod 2)

Measured space with counting measure µ(A) = #A
2n

Consider the function f : {0, 1}n → R, (x1, . . . , xn) 7→ 1
n

∑
i xi

The median of f is 1
2 : µ{x | f (x) 6 1

2 } = µ{x | f (x) > 1
2 }

How far are we away from the median on average?

Af (ε, n) : =
{
(x1, . . . , xn) |

∣∣∣∣f (x1, . . . , xn) −
1
2

∣∣∣∣ < ε}

µ(Af (ε, n)) =
1
2n

bnεc∑
k=dnεe

(
n
k

)

Concentration of measure – an example

For ε = 1
10 this is what µ(Af (ε), n) varies as n increases:

This is a general pattern in metric measured spaces

Concentration of measure – an example

For ε = 1
10 this is what µ(Af (ε), n) varies as n increases:

This is a general pattern in metric measured spaces

Probabilistic adequacy and concentration of measure

{

x=sample(bernoulli (0.5))

}

Denotationally Jx = sample(bernoulli(0.5))K(µ) ∝ Bern(0.5)

The function f computes the empirical probability of Σ = [x 7→ 1]

The convergence of µ(Af)(ε, n) given above shows that the empirical
probability (multiple runs of the program) converges with the
denotational semantics.

Moreover, the rate of convergence can also be bounded (
√

n)

Probabilistic adequacy and concentration of measure

{

x=sample(bernoulli (0.5))

}

Denotationally Jx = sample(bernoulli(0.5))K(µ) ∝ Bern(0.5)

The function f computes the empirical probability of Σ = [x 7→ 1]

The convergence of µ(Af)(ε, n) given above shows that the empirical
probability (multiple runs of the program) converges with the
denotational semantics.

Moreover, the rate of convergence can also be bounded (
√

n)

Probabilistic adequacy and concentration of measure

{

x=sample(bernoulli (0.5))

}

Denotationally Jx = sample(bernoulli(0.5))K(µ) ∝ Bern(0.5)

The function f computes the empirical probability of Σ = [x 7→ 1]

The convergence of µ(Af)(ε, n) given above shows that the empirical
probability (multiple runs of the program) converges with the
denotational semantics.

Moreover, the rate of convergence can also be bounded (
√

n)

Probabilistic adequacy and concentration of measure

{

x=sample(bernoulli (0.5))

}

Denotationally Jx = sample(bernoulli(0.5))K(µ) ∝ Bern(0.5)

The function f computes the empirical probability of Σ = [x 7→ 1]

The convergence of µ(Af)(ε, n) given above shows that the empirical
probability (multiple runs of the program) converges with the
denotational semantics.

Moreover, the rate of convergence can also be bounded (
√

n)

Probabilistic adequacy and concentration of measure

{

x=sample(bernoulli (0.5))

}

Denotationally Jx = sample(bernoulli(0.5))K(µ) ∝ Bern(0.5)

The function f computes the empirical probability of Σ = [x 7→ 1]

The convergence of µ(Af)(ε, n) given above shows that the empirical
probability (multiple runs of the program) converges with the
denotational semantics.

Moreover, the rate of convergence can also be bounded (
√

n)

Thank you.

