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What is generalisation?

The ability to perform well on unseen data.

Assumption: the data (both for the training and testing) comes i.i.d.
from a distribution D.

Usually work in a distribution-agnostic setting.
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What are generalisation bounds?

Classification setting: input space X and output space
Y := {1, . . . , k} with a distribution D on X × Y.

Goal: to learn a function f : X → Y from a sample
S := {(xi , yi )}mi=1 ⊆ X × Y.

Generalisation bounds: bounding the difference between the expected
and empirical losses of f with high probability over S .
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What are generalisation bounds?

For neural networks, we use the expected classification loss:

L0(f ) := P(x ,y)∼D

(
f (x)y ≤ max

y ′ 6=y
f (x)y ′

)
,

and the empirical margin loss:

L̂γ(f ) :=
1

m

m∑
i=1

1

[
f (x)y ≤ γ + max

y ′ 6=y
f (x)y ′

]
.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 6 / 31



What are generalisation bounds?

For neural networks, we use the expected classification loss:

L0(f ) := P(x ,y)∼D

(
f (x)y ≤ max

y ′ 6=y
f (x)y ′

)
,

and the empirical margin loss:

L̂γ(f ) :=
1

m

m∑
i=1

1

[
f (x)y ≤ γ + max

y ′ 6=y
f (x)y ′

]
.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 6 / 31



What are generalisation bounds?

For neural networks, we use the expected classification loss:

L0(f ) := P(x ,y)∼D

(
f (x)y ≤ max

y ′ 6=y
f (x)y ′

)
,

and the empirical margin loss:

L̂γ(f ) :=
1

m

m∑
i=1

1

[
f (x)y ≤ γ + max

y ′ 6=y
f (x)y ′

]
.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 6 / 31



Why are generalisation bounds useful?

They allow us to quantify a given model’s expected generalisation
performance.

E.g.: With probability 95% over the training sample, the error is at
most 1%.

They can also:

Provide insight on the ability of a model to generalise.

This is of particular interest for us: neural networks have many
counter-intuitive properties.

Inspire new algorithms or regularisation techniques.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 7 / 31



Why are generalisation bounds useful?

They allow us to quantify a given model’s expected generalisation
performance.

E.g.: With probability 95% over the training sample, the error is at
most 1%.

They can also:

Provide insight on the ability of a model to generalise.

This is of particular interest for us: neural networks have many
counter-intuitive properties.

Inspire new algorithms or regularisation techniques.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 7 / 31



Why are generalisation bounds useful?

They allow us to quantify a given model’s expected generalisation
performance.

E.g.: With probability 95% over the training sample, the error is at
most 1%.

They can also:

Provide insight on the ability of a model to generalise.

This is of particular interest for us: neural networks have many
counter-intuitive properties.

Inspire new algorithms or regularisation techniques.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 7 / 31



Why are generalisation bounds useful?

They allow us to quantify a given model’s expected generalisation
performance.

E.g.: With probability 95% over the training sample, the error is at
most 1%.

They can also:
Provide insight on the ability of a model to generalise.

This is of particular interest for us: neural networks have many
counter-intuitive properties.

Inspire new algorithms or regularisation techniques.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 7 / 31



Why are generalisation bounds useful?

They allow us to quantify a given model’s expected generalisation
performance.

E.g.: With probability 95% over the training sample, the error is at
most 1%.

They can also:
Provide insight on the ability of a model to generalise.

This is of particular interest for us: neural networks have many
counter-intuitive properties.

Inspire new algorithms or regularisation techniques.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 7 / 31



Why are generalisation bounds useful?

They allow us to quantify a given model’s expected generalisation
performance.

E.g.: With probability 95% over the training sample, the error is at
most 1%.

They can also:
Provide insight on the ability of a model to generalise.

This is of particular interest for us: neural networks have many
counter-intuitive properties.

Inspire new algorithms or regularisation techniques.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 7 / 31



Overview

1 Introduction

2 General Strategies to Obtain Generalisation Bounds

3 Survey of Generalisation Bounds for Neural Networks

4 A Compression Approach [Arora et al., 2018]

5 Conclusion, Research Directions

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 8 / 31



General Strategies

Generalisation bounds (GB) for neural networks are usually obtained by

1 Defining a class H of functions computed by neural networks with
certain properties (e.g., weight matrices with bounded norms, number
of layers, etc.),

2 Deriving a generalisation bound in terms of a complexity measure
M(H) (e.g. size of H, Rademacher complexity),

3 Upper bounding M(H) in terms of model parameters (e.g., norm of
weight matrices, number of layers, etc.).
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General Strategies: Rademacher Complexity

Definition (Rademacher complexity)

Let G be a family of functions from a set Z to R. Let σ1, . . . , σm be
Rademacher variables: P(σi = 1) = P(σi = −1) = 1/2. The empirical
Rademacher complexity of G w.r.t. to a sample S = {zi}mi=1 is

RS(G ) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(zi )

]
.

Intuition: How much G correlates with random noise on S . Simple
examples...
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General Strategies: Rademacher Complexity

Theorem

Let G be a family of functions from Z to [0, 1], and let S be a sample of
size m drawn from Z according to D. Let L(g) = Ez∼D [g(z)] and
L̂(g) = 1

m

∑m
i=1 g(zi ). Then for any δ > 0, with probability at least 1− δ

over S , for all functions g ∈ G ,

L(g) ≤ L̂(g) + 2RS(G ) + O

(√
log(1/δ)

m

)
.
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General Strategies: Rademacher Complexity

Computing the empirical Rademacher complexity (RC) of a given H is
usually hard or impractical.

One usually derives Rademacher complexity upper bounds, for
example by using the Dudley entropy integral.
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Generalisation Bounds for Neural Networks

VC-dimension-based bounds, which usually amount to parameter
counting [Goldberg and Jerrum, 1995, Bartlett et al., 1999,
Bartlett et al., 2017b].

Bounds that depend on the norm of the linear transformations
[Bartlett, 1997].

Spectrally-normalised margin-based bounds [Bartlett et al., 2017a].

PAC-Bayesian approach to margin-based bounds
[Neyshabur et al., 2017].
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Compression Approach: Overview

Paper:
Stronger generalization bounds for deep nets via a compression
approach.
Sanjeev Arora, Rong Ge, Behnam Neyshabur and Yi Zhang.

Two methods, both based on compressing a network by representing its
weight matrices with fewer parameters.

1 Define compressibility of a function f via G , a (finite) set of functions,
and derive a generalisation bound that relates the losses of f and G .

f : a neural network; G : class of neural networks that have less
parameters and that can approximate f .
Results in the same bound as in [Neyshabur et al., 2017].

2 A different compression framework based on random projections,
together with noise stability properties of the network, gives tighter
generalisation bounds than the first method.

Can be adapted to convolutional neural networks.
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Compressed networks: Method 1

Compression framework Define a notion of compressibility with respect
to an approximation parameter γ > 0 and sample S .

Definition

f : Rd → Rk .

GA :=
{
gA : Rd → Rk | A ∈ A

}
, where A is a set of parameters.

We say that f is (γ,S)-compressible via GA if there exists A ∈ A such
that for all x in the sample S ,

‖f (x)− gA(x)‖∞ ≤ γ .
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Compressed networks: Method 1

Definition

f is (γ,S)-compressible via GA if there exists A ∈ A such that for all x in
the sample S ,

‖f (x)− gA(x)‖∞ ≤ γ .

Theorem

Let GA := {gA | A ∈ A}, where A is a set of q parameters, each of which
can have at most r discrete values.Let S be a training set of m samples.
For any margin γ > 0, if f is (γ,S)-compressible via GA, then there exists
A ∈ A such that w.h.p. over S ,

L0(gA) ≤ L̂γ(f ) +O

(√
q log r

m

)
.
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Compressed networks: Method 1

How do we compress a neural network and apply this theorem?

Compression scheme:

Low-rank approximation for the weight matrices
=⇒ the weight matrices can be represented using less parameters.

The choice of the reconstruction error ensures that the compressed
network approximates the original network.

Discretise weights and define the class GA.

Theorem

Let S ∼ Dm and let γ > 0. A neural network of depth L with linear
transformations A1, . . . ,AL. Then with high probability over S ,

L0(f ) ≤ L̂γ(f ) + Õ


√√√√hL2 maxx∈S ‖x‖

∏L
i=1 ‖Ai‖22

∑L
i=1

‖Ai‖2F
‖Ai‖22

γ2m

 .

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 19 / 31



Compressed networks: Method 1

How do we compress a neural network and apply this theorem?
Compression scheme:

Low-rank approximation for the weight matrices
=⇒ the weight matrices can be represented using less parameters.

The choice of the reconstruction error ensures that the compressed
network approximates the original network.

Discretise weights and define the class GA.

Theorem

Let S ∼ Dm and let γ > 0. A neural network of depth L with linear
transformations A1, . . . ,AL. Then with high probability over S ,

L0(f ) ≤ L̂γ(f ) + Õ
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√√√√hL2 maxx∈S ‖x‖

∏L
i=1 ‖Ai‖22

∑L
i=1

‖Ai‖2F
‖Ai‖22

γ2m

 .

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 19 / 31



Compressed networks: Method 1

How do we compress a neural network and apply this theorem?
Compression scheme:

Low-rank approximation for the weight matrices
=⇒ the weight matrices can be represented using less parameters.

The choice of the reconstruction error ensures that the compressed
network approximates the original network.

Discretise weights and define the class GA.

Theorem

Let S ∼ Dm and let γ > 0. A neural network of depth L with linear
transformations A1, . . . ,AL. Then with high probability over S ,

L0(f ) ≤ L̂γ(f ) + Õ


√√√√hL2 maxx∈S ‖x‖

∏L
i=1 ‖Ai‖22

∑L
i=1

‖Ai‖2F
‖Ai‖22

γ2m

 .
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Compressed networks: Method 1

Theorem

Let S ∼ Dm and let γ > 0. A neural network of depth L with linear
transformations A1, . . . ,AL. Then with high probability over S ,

L0(f ) ≤ L̂γ(f ) + Õ


√√√√hL2 maxx∈S ‖x‖

∏L
i=1 ‖Ai‖22

∑L
i=1

‖Ai‖2F
‖Ai‖22

γ2m

 .

Some remarks:

γ is used both as the margin for the loss, and the approximation
parameter for compressibility.

Although the framework bounds the expected loss of the compressed
network gA by the empiricial loss of the original network f , one can
show that gA approximates f on the whole input space and not just
S . This thus gives a generalisation bound for f .
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Compressed networks: Method 2

Two main ideas:

1 Define neural network properties, which are related to noise stability
and empirical observations.

2 Randomly project the linear transformations onto lower-dimensional
subspace (Johnson-Lindenstrauss transformation).

3 Use (1) and (2) to derive a tighter generalisation bound.
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Compressed networks: Method 2

Examples of neural network properties:

µi (layer cushion) : ≈ reciprocal of noise sensitivity.

c (activation contraction): relates to the percentage of ReLU units
that are activated (in practice ≈ 1/2).

These properties relate to noise sensitivity and empirical observations.
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Compressed networks: Method 2

General idea for the random projections:

Perturb the weight matrices by random projection on a
lower-dimensional subspace.

Prove that the output of the network isn’t changed much.

Result of the noise stability properties mentioned on the previous slide,
and the Johnson-Lindenstrauss transformation.

Can represent the network with much fewer parameters.

Use standard tools to get a generalisation bound:

Dudley entropy integral to bound the empirical Rademacher complexity
of the margin loss function on the compressed network.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 23 / 31



Compressed networks: Method 2

General idea for the random projections:

Perturb the weight matrices by random projection on a
lower-dimensional subspace.

Prove that the output of the network isn’t changed much.

Result of the noise stability properties mentioned on the previous slide,
and the Johnson-Lindenstrauss transformation.

Can represent the network with much fewer parameters.

Use standard tools to get a generalisation bound:

Dudley entropy integral to bound the empirical Rademacher complexity
of the margin loss function on the compressed network.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 23 / 31



Compressed networks: Method 2

General idea for the random projections:

Perturb the weight matrices by random projection on a
lower-dimensional subspace.

Prove that the output of the network isn’t changed much.

Result of the noise stability properties mentioned on the previous slide,
and the Johnson-Lindenstrauss transformation.

Can represent the network with much fewer parameters.

Use standard tools to get a generalisation bound:

Dudley entropy integral to bound the empirical Rademacher complexity
of the margin loss function on the compressed network.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 23 / 31



Compressed networks: Method 2

General idea for the random projections:

Perturb the weight matrices by random projection on a
lower-dimensional subspace.

Prove that the output of the network isn’t changed much.

Result of the noise stability properties mentioned on the previous slide,
and the Johnson-Lindenstrauss transformation.

Can represent the network with much fewer parameters.

Use standard tools to get a generalisation bound:

Dudley entropy integral to bound the empirical Rademacher complexity
of the margin loss function on the compressed network.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 23 / 31



Compressed networks: Method 2

General idea for the random projections:

Perturb the weight matrices by random projection on a
lower-dimensional subspace.

Prove that the output of the network isn’t changed much.

Result of the noise stability properties mentioned on the previous slide,
and the Johnson-Lindenstrauss transformation.

Can represent the network with much fewer parameters.

Use standard tools to get a generalisation bound:

Dudley entropy integral to bound the empirical Rademacher complexity
of the margin loss function on the compressed network.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 23 / 31



Compressed networks: Method 2

General idea for the random projections:

Perturb the weight matrices by random projection on a
lower-dimensional subspace.

Prove that the output of the network isn’t changed much.

Result of the noise stability properties mentioned on the previous slide,
and the Johnson-Lindenstrauss transformation.

Can represent the network with much fewer parameters.

Use standard tools to get a generalisation bound:

Dudley entropy integral to bound the empirical Rademacher complexity
of the margin loss function on the compressed network.

Pascale Gourdeau (University of Oxford) Generalisation Bounds for NNs 15 November 2018 23 / 31



Compressed networks: Method 2

Theorem

For any fully connected network fA with ρδ ≥ 3L, and any margin γ > 0,
the random projection algorithm generates weights Ã s.t. with high
probability over the training set,

L0(fÃ) ≤ L̂γ(fA) + Õ


√√√√c2L2 maxx∈S ‖fA(x)‖22

∑L
i=1

1
µ2i µ

2
i→

γ2m

 .
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Conclusion

Two different frameworks to compress neural networks and get better
generalisation bounds.

One was able to recover the result from [Neyshabur et al., 2017].

The other is a tighter bound and performs well in practice.

Can be extended to convolutional neural networks.
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Research Directions

Other compression approaches: weight pruning, computational unit
pruning, etc.

Current and future work:

Can we get better bounds? Currently: not useful in practice.
Can we develop notion and guarantees for adversarial generalisation?
[Yin et al., 2018, Cullina et al., 2018]
Can algorithmic stability offer better bounds and explanations?
[Bousquet and Elisseeff, 2002],[Hardt et al., 2016].
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