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Outline
• Motivations. 

• Background:  Bayesian Inference with Gaussian Processes. 

• Problem Formulation: Probabilistic invariance. 

• Methods: 

- Safe-approximation of invariance property. 

- Branch and Bound optimisation scheme for GPs. 

• Case of Study: Empirical analysis of ReLU fully-connected 
Neural Networks via GP with ReLU kernel.



Robustness for Bayesian 
Learning, Why? 

• Bayesian methods are employed in safety critical 
applications, where uncertainty estimation is necessary 
(e.g. diagnosis, medicine intake, control systems…). 

• Robustness guarantees are needed to prove the 
correctness of the model in a probabilistic fashion. 

• Current methods either neglect uncertainty or are based 
on empirical approaches (e.g. variance thresholding)

Problem: Provide probabilistic guarantees for GPs.



Background
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Bayesian Inference with GPs 
(in Figures)

f ⇠ GP

• Step 1: Definition of a GP 
prior distribution.
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Bayesian Inference with GPs 
(in Figures)

• Step 2: Conditioning on 
training data.

f ⇠ GP f ⇠ GP |x

• Step 1: Definition of a GP 
prior distribution.



Bayesian Inference with GPs 
(in Formulas)

• Let    be a GP with prior mean    and variance    .  
Consider a training set                                       . The goal 
of Bayesian inference is to find: 

• For GPs this can be done analytically, obtaining a GP with 
posteriori mean and variance given by:

z µ ⌃
D = {(xi, yi)}i=1,...,N

ẑ = z |D

µ̂(x⇤) = µ(x⇤) + ⌃x⇤,D⌃
�1
D,D(y � µD)

⌃̂x⇤,x⇤ = ⌃x⇤,x⇤ � ⌃x⇤,D⌃
�1
D,D⌃

T
x⇤,D



Problem Formulation



Probabilistic Invariance
• Probabilistic generalisation of problem associated with 

existence of local adversarial examples. 

• Intuitively, we want to count the number of functions 
extracted from the GP for which deterministic invariance 
does not hold.



• Probabilistic generalisation of problem associated with 
existence of local adversarial examples. 

• Intuitively, we want to count the number of functions 
extracted from the GP for which deterministic invariance 
does not hold.

Probabilistic Invariance

Consider     and a neighbourhood   . Let    be the adversarial 
threshold, then invariance probability is defined by:

�(x⇤, T, �) = P (9x0 2 T s.t. ||ẑ(x0)� ẑ(x⇤))|| > �)

x⇤ T �
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Probabilistic Invariance  
(in Figures)

f1 ⇠ GP Safe



0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

Probabilistic Invariance  
(in Figures)

0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

f1 ⇠ GP

f2 ⇠ GP

Safe

Unsafe



0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

Probabilistic Invariance  
(in Figures)

0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

f1 ⇠ GP

f2 ⇠ GP

Safe

Unsafe



0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

Probabilistic Invariance  
(in Figures)

0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

f1 ⇠ GP

f2 ⇠ GP

f1 ⇠ GP

Safe

Unsafe

Safe



0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

Probabilistic Invariance  
(in Figures)

0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

0 0.2 0.4 0.6 0.8 1
-2

0

2

T f  GP x*

f1 ⇠ GP

f2 ⇠ GP

f1 ⇠ GP

Safe

Unsafe

Safe

�(x⇤, T, �)



Methods



Upper-bound on Invariance 
• Computation of                    is far from trivial as it involves 

solutions of uncountably many optimisation problems. 
Instead, we compute a safe approximation.

�(x⇤, T, �)
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solutions of uncountably many optimisation problems. 
Instead, we compute a safe approximation.

�(x⇤, T, �)

Theorem 1: For every output dimension    let: 

Then: 

i

⌘i =
� � supx2T |µo(x⇤, x)|1

n
�

12

Z 1
2 supx1,x22T d(i)

x⇤ (x1,x2)

0

vuutln

 
�pmK(i)

x⇤ D

z
+ 1
�m
!
dz

�(x⇤, T, �|D)  �̂(x⇤, T, �|D) := 2
nX

i=1

e
� ⌘̄2

i
2⇠(i)
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• We want to upper-bound:  
 

• Since                                     is still a GP we can employ the 
Borell-TIS inequality, which upper-bounds the supremum:  
 
 

• Finally,                               can be over-approximated using 
the Dudley entropy integral.

Proof Sketch

�(x⇤, T, �|D) = P (supx2T ||z(x)� z(x⇤)|| > �)

zo(x⇤, x) = z(x⇤)� z(x)

E[supx2T zo(x⇤, x)]

P (supx2T ||zo(x⇤, x)|| > �)  e
(��E[supx2T zo(x⇤,x)])2

2�2
T



Constant Computation
• The upper-bound computation requires computation 

of different constants e.g.:  
 

• We define two functions    and    that decompose the 
GP variance as:                                . 

• Using interval analysis on    and optimising    we can 
compute lower and upper bounds on each   

• Thanks to linearity, we propagate these to get bounds 
on the sup; and refine via Branch and Bound.

sup
x2T

µ(x⇤)� µ(x) = µ(x⇤)� inf
x2T

µ(x) = µ(x⇤)� inf
x2T

⌃x,D⌃
�1
D,Dy

 '
⌃x,xi =  (' (x, xi))

'  
⌃x,xi



Case of Study



• Bayesian fully-connected neural networks converge in 
distribution to specific GPs, as the number of neurons 
approaches infinity*. 

• We can employ the method we developed to perform 
empirical analysis of fully connected NNs. 

• We focus on ReLU NNs applied to the MNIST dataset. 

• For scalability, we provide feature-level analysis using SIFT.

GPs and Neural Networks: 
Experimental Settings 

*Neal, R. M. Bayesian learning for neural networks. Springer, 2012.



Parametric Analysis on 
Adversarial Thresholds
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Parametric Analysis on 
Variance
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Conclusions

• We developed a formal approach for invariance 
analysis of Bayesian inference with Gaussian 
Processes. 

• Developed an algorithmic approach for computation of 
upper-bound on invariance probability. 

• We relied on the relationship between Bayesian NNs 
and GPs, to analyse NN behaviour at infinity width limit. 

• Provided experimental results on MNIST.  


