Robustness Guarantees for Bayesian Inference with Gaussian Processes

Andrea Patane Department of Computer Science, University of Oxford Joint work with: Luca Cardelli, Marta Kwiatkowska and Luca Laurenti

Outline

- Motivations.
- Background: Bayesian Inference with Gaussian Processes.
- Problem Formulation: Probabilistic invariance.
- Methods:
	- Safe-approximation of invariance property.
	- Branch and Bound optimisation scheme for GPs.
- Case of Study: Empirical analysis of ReLU fully-connected Neural Networks via GP with ReLU kernel.

Robustness for Bayesian Learning, Why?

- Bayesian methods are employed in safety critical applications, where uncertainty estimation is necessary (e.g. diagnosis, medicine intake, control systems…).
- Robustness guarantees are needed to prove the correctness of the model in a probabilistic fashion.
- Current methods either neglect uncertainty or are based on empirical approaches (e.g. variance thresholding)

Problem: Provide probabilistic guarantees for GPs.

Background

Bayesian Inference with GPs (in Figures)

Step 1: Definition of a GP prior distribution.

Bayesian Inference with GPs (in Figures)

Step 1: Definition of a GP prior distribution.

 $f \sim \mathcal{GP}$

Step 2: Conditioning on training data.

$$
f\sim \mathcal{GP}\,|\,\mathbf{x}
$$

Bayesian Inference with GPs (in Formulas)

• Let z be a GP with prior mean μ and variance Σ . Consider a training set $D = \{(x_i, y_i)\}_{i=1,\ldots,N}$. The goal of Bayesian inference is to find:

 $\hat{z} = z | D$

• For GPs this can be done analytically, obtaining a GP with posteriori mean and variance given by:

$$
\hat{\mu}(x^*) = \mu(x^*) + \Sigma_{x^*, \mathcal{D}} \Sigma_{\mathcal{D}, \mathcal{D}}^{-1} (\mathbf{y} - \mu_{\mathcal{D}})
$$

$$
\hat{\Sigma}_{x^*, x^*} = \Sigma_{x^*, x^*} - \Sigma_{x^*, \mathcal{D}} \Sigma_{\mathcal{D}, \mathcal{D}}^{-1} \Sigma_{x^*, \mathcal{D}}^{T}
$$

Problem Formulation

Probabilistic Invariance

- Probabilistic generalisation of problem associated with existence of local adversarial examples.
- Intuitively, we want to count the number of functions extracted from the GP for which deterministic invariance does not hold.

Probabilistic Invariance

- Probabilistic generalisation of problem associated with existence of local adversarial examples.
- Intuitively, we want to count the number of functions extracted from the GP for which deterministic invariance does not hold.

Consider x^* and a neighbourhood T. Let δ be the adversarial threshold, then invariance probability is defined by:

$$
\phi(x^*, T, \delta) = P(\exists x' \in T \, s.t. \, ||\hat{z}(x') - \hat{z}(x^*))|| > \delta)
$$

Methods

• Computation of $\phi(x^*,T,\delta)$ is far from trivial as it involves solutions of uncountably many optimisation problems. Instead, we compute a safe approximation.

• Computation of $\phi(x^*,T,\delta)$ is far from trivial as it involves solutions of uncountably many optimisation problems. Instead, we compute a safe approximation.

Theorem 1: For every output dimension i let: Then: $\eta_i =$ $\delta - \sup_{x \in T} |\mu^o(x^*, x)|_1$ *n* $12 \int_0^{\frac{1}{2} \text{sup}_{x_1, x_2 \in T} d_{x^*}^{(i)}(x_1, x_2)}$ $\overline{0}$ $\sqrt{ln\left(\frac{1}{2}\right)}$ $\overline{(\ }$ $\sqrt{m}K_{x^*}^{(i)}D$ *z* $+1)^{m}$! *dz* $\phi(x^*,T,\delta|\mathcal{D}) \leq \hat{\phi}(x^*,T,\delta|\mathcal{D}) := 2\sum$ *n i*=1 *e* $-\frac{\bar{\eta}_i^2}{2\epsilon}$ *i* $2\xi^{(i)}$

Maximum mean
\ndifference
\n
$$
\eta_i = \frac{\delta - \sup_{x \in T} |\mu^o(x^*, x)|_1}{n}
$$
\n
$$
12 \int_0^{\frac{1}{2} sup_{x_1, x_2 \in T} d_{x^*}^{(i)}(x_1, x_2)} \sqrt{\ln\left(\left(\frac{\sqrt{m} K_{x^*}^{(i)} D}{z} + 1\right)^m\right)} dz
$$

Then:

$$
\phi(x^*, T, \delta | \mathcal{D}) \leq \hat{\phi}(x^*, T, \delta | \mathcal{D}) := 2 \sum_{i=1}^n e^{-\frac{\bar{\eta}_i^2}{2\xi^{(i)}}}
$$

Then:

$$
\phi(x^*, T, \delta | \mathcal{D}) \leq \hat{\phi}(x^*, T, \delta | \mathcal{D}) := 2 \sum_{i=1}^n e^{-\frac{\bar{\eta}_i^2}{2\xi^{(i)}}}
$$

Then:

$$
\phi(x^*, T, \delta | \mathcal{D}) \le \hat{\phi}(x^*, T, \delta | \mathcal{D}) := 2 \sum_{i=1}^n e^{-\frac{\bar{\eta}_i^2}{2\xi^{(i)}}}
$$

 Correlation correlation correlation

Proof Sketch

• We want to upper-bound:

 $\phi(x^*,T,\delta|\mathcal{D}) = P(\sup_{x \in T} ||z(x) - z(x^*)|| > \delta)$

• Since $z^o(x^*, x) = z(x^*) - z(x)$ is still a GP we can employ the Borell-TIS inequality, which upper-bounds the supremum:

$$
P\left(sup_{x \in T}||z^{o}(x^*, x)|| > \delta\right) \le e^{\frac{(\delta - E[\sup_{x \in T} z^{o}(x^*, x)])^2}{2\sigma_T^2}}
$$

• Finally, $E[\sup_{x \in T} z^o(x^*, x)]$ can be over-approximated using the Dudley entropy integral.

Constant Computation

• The upper-bound computation requires computation of different constants e.g.:

sup *x*2*T* $\mu(x^*) - \mu(x) = \mu(x^*) - \inf_{x \in T} \mu(x) = \mu(x^*) - \inf_{x \in T}$ $\sum_{x,\mathcal{D}}\sum_{\mathcal{D},\mathcal{D}}^{-1}\mathbf{y}$

- We define two functions φ and ψ that decompose the GP variance as: $\Sigma_{x,x_i} = \psi(\varphi(x,x_i)).$
- Using interval analysis on φ and optimising ψ we can compute lower and upper bounds on each Σ_{x,x_i}
- Thanks to linearity, we propagate these to get bounds on the sup; and refine via Branch and Bound.

Case of Study

GPs and Neural Networks: Experimental Settings

- •Bayesian fully-connected neural networks converge in distribution to specific GPs, as the number of neurons approaches infinity*.
- We can employ the method we developed to perform empirical analysis of fully connected NNs.
- We focus on ReLU NNs applied to the MNIST dataset.
- For scalability, we provide feature-level analysis using SIFT.

Parametric Analysis on Adversarial Thresholds

 $\hat{\phi}_1$

Parametric Analysis on Variance

Analysis of how variance changes in *T* depending on number of training samples and layers.

Conclusions

- We developed a formal approach for invariance analysis of Bayesian inference with Gaussian Processes.
- Developed an algorithmic approach for computation of upper-bound on invariance probability.
- We relied on the relationship between Bayesian NNs and GPs, to analyse NN behaviour at infinity width limit.
- Provided experimental results on MNIST.