

Formal verification of complex systems: model-based and data-driven methods

Alessandro Abate

Department of Computer Science, University of Oxford

Alan Turing Institute - Jan 12, 2018

Automated formal verification: successes and frontiers

• automated, sound, formal

Automated formal verification: successes and frontiers

- automated, sound, formal
- industrial impact in verification of

protocols, hardware circuits, and software

Automated formal verification: successes and frontiers

- automated, sound, formal
- industrial impact in verification of

protocols, hardware circuits, and software

- asserts properties over given model of a system
- scalable and useful on "unsophisticated" models

Automated formal verification: pushing the envelope

• verification of physical systems (cyber-physical systems)

- dynamical models with uncertainty, noise (for CPS)
- bridging the gap between data and models
- principled integration of learning and verification

Building automation systems: an exemplar of CPS

- cyber-physical systems: integration of physical/analogue with cyber/digital
- building automation systems as a CPS exemplar

Building automation systems: an exemplar of CPS

- cyber-physical systems: integration of physical/analogue with cyber/digital
- building automation systems as a CPS exemplar

• smart energy initiatives at Oxford CS

Building automation systems - a CPS exemplar

Building automation system setup in rooms 478/9 at Oxford CS

- advanced modelling for smart buildings
- application: certifiable energy management
 - control of temperature, humidity, CO₂
 - e model-based predictive maintenance of devices
 - fault-tolerant control
 - demand-response over smart grids

Building automation systems - a CPS exemplar

Building automation system setup in rooms 478/9 at Oxford CS

- advanced modelling for smart buildings
- application: certifiable energy management
 - O control of temperature, humidity, CO₂
 - 2 model-based predictive maintenance of devices
 - fault-tolerant control
 - 9 demand-response over smart grids

Building automation systems - a CPS exemplar

Building automation system setup in rooms 478/9 at Oxford CS

- advanced modelling for smart buildings
- application: certifiable energy management
 - control of temperature, humidity, CO₂
 - Image: Market Market
 - fault-tolerant control
 - 9 demand-response over smart grids

- \bullet model CO_2 dynamics, under the effect of
 - occupants: room full (F)/empty (E)
 - window: open (O)/closed (C)
 - air circulation: ON/OFF

$$x_{k+1} = x_k + \frac{\Delta}{V} \left(-\mathbb{1}_{ON} m x_k + \mu_{\{O,C\}} (C_{out} - x_k) \right) + \mathbb{1}_F C_{occ}$$

- Δ sampling time
- V zone volume
- *m* air inflow (when ON)
- μ_O air exchange with outside (when O)
- $\mu_{\rm C}$ air leakage with outside (when C)
- Cout outside CO₂ level
- C_{occ} CO₂ by occupants (when F)

- model CO₂ dynamics, under the effect of
 - occupants: room full (F)/empty (E)
 - window: open (O)/closed (C)
 - air circulation: ON/OFF

$$x_{k+1} = x_k + \frac{\Delta}{V} \left(-\mathbb{1}_{ON} m x_k + \mu_{\{O,C\}} (C_{out} - x_k) \right) + \mathbb{1}_F C_{occ}$$

Parameter	Value
Δ	15 min
V	288 m ³
т	0.25 m ³ /min
μ_O	0.1667 m ³ /min
μ_{C}	0.01 m ³ /min
Cout	375 ppm
Cocc	0.4 ppm/min

- model CO₂ dynamics, under the effect of
 - occupants: room empty E
 - window: closed C
 - air circulation: ON

- model CO₂ dynamics, under the effect of
 - occupants: room full F
 - window: closed C
 - air circulation: ON

12 0 12 0 12 0 12 0

0 12 0 12 0 12 0 12 0

- model CO₂ dynamics, under the effect of
 - occupants: room full F
 - window: open O
 - air circulation: ON

- occupants: room empty E
- window: closed C
- air circulation: ON

$$x_{k+1} = x_k + \frac{\Delta}{V} \left(-mx_k + \mu_O(C_{out} - x_k) \right)$$

- model CO₂ dynamics, under the effect of
 - occupants: room full (F)/empty (E)
 - window: open (O)/closed (C)
 - air circulation: ON

model with hybrid dynamics

- model CO₂ dynamics, under the effect of
 - occupants: room full (F)/empty (E)
 - window: open (O)/closed (C)
 - air circulation: OFF

model with hybrid dynamics

data-driven analysis

data-driven analysis model learning (with data), and model-based verification

disconnect between data-driven learning and model-based verification

disconnect between data-driven learning and model-based verification

principled integration of learning and verification

Parametric Markov chains

Parametric Markov chains

$$\mathfrak{G} = (\Theta, S, \mathbb{T}_{\theta}, \rightarrow, \mathrm{AP}, L)$$

S – set of states \mathbb{T}_{θ} – mapping $S \times S \rightarrow [0, 1]$ expressed in terms of $\theta \in \Theta$ Θ – set of all possible valuations of θ , vector of parameters \rightarrow – starting states

Parametric Markov chains

$$\mathcal{G} = (\Theta, S, \mathbb{T}_{\theta}, \rightarrow, AP, L)$$

S – set of states

- $\mathbb{T}_{ heta}$ mapping S imes S o [0,1] expressed in terms of $heta \in \Theta$
- Θ set of all possible valuations of $\theta,$ vector of parameters
- \rightarrow starting states
- L labelling function, mapping states into 2^{AP} , AP alphabet

• denote by $M(\theta)\in \mathfrak{G}$ a model parameterised by $\theta\in \Theta$

• property ϕ specified in PCTL, e.g.

 $\phi = \mathbb{P}_{\geq 0.99}(\Box^{\leq 20} \text{ safe}), \qquad \phi = \mathbb{P}_{> 0.5}(\text{safe U reach}), \qquad \text{safe, reach} \in \mathrm{AP}$

• probabilistic model checking PCTL properties over Markov chains

- input: Markov chain (S, \mathbb{T}) , PCTL formula ϕ
- output: $\mathsf{Sat}(\phi) = \{z \in S : z \models \phi\}$
- tools: PRISM, STORM,

Parameter synthesis

• property ϕ specified in PCTL, e.g.

$$\phi = \mathbb{P}_{\geq 0.99}(\Box^{\leq 20} \text{ safe}), \qquad \phi = \mathbb{P}_{> 0.5}(\text{safe U reach}), \qquad \text{safe, reach} \in \mathrm{AP}$$

- \bullet classify models in Θ according to property of interest $\phi,$ that is
- synthesise parameters $\theta \in \Theta$ s.t. $M(\theta)$ satisfies ϕ :

Bayesian inference

$$p(\theta_j \mid D) = \frac{\mathbb{P}(D \mid \theta_j) p(\theta_j)}{\mathbb{P}(D)}$$
$$= \frac{\prod_{s' \in S} \mathbb{T}_{\theta}(s_j, s')^{D_{s_j}^{s'}} p(\theta_j)}{\mathbb{P}(D_{s_j})}$$

- D overall data gathered (traces) D_{s_i} - traces crossing state s_j , where $\theta_j = \theta_{s_i}$
- $p(\theta_i)$ prior distribution
- $\prod_{s' \in S} \mathbb{T}_{\theta}(s_{j}, s')^{D_{s_j}^{s'}}$ likelihood, multinomial distribution at state s_j

Bayesian inference

$$p(\theta_j \mid D) = \frac{\mathbb{P}(D \mid \theta_j) p(\theta_j)}{\mathbb{P}(D)}$$
$$= \frac{\prod_{s' \in S} \mathbb{T}_{\theta}(s_j, s')^{D_{s_j}^{s'}} p(\theta_j)}{\mathbb{P}(D_{s_j})}$$

- D overall data gathered (traces) D_{s_i} - traces crossing state s_j , where $\theta_j = \theta_{s_j}$
- select as conjugate prior the Dirichlet distribution

$$p(\theta_j) = \operatorname{Dir}(\theta_j \mid \alpha) \propto \theta_j^{\alpha_1 - 1} (1 - \theta_j)^{\alpha_2 - 1}$$

for pair $(\theta_j, 1 - \theta_j)$, with $\alpha = (\alpha_1, \alpha_2)$ hyperparameters

Bayesian inference

$$p(\theta_j \mid D) = \frac{\mathbb{P}(D \mid \theta_j) p(\theta_j)}{\mathbb{P}(D)}$$
$$= \frac{\prod_{s' \in S} \mathbb{T}_{\theta}(s_j, s')^{D_{s_j}^{s'}} p(\theta_j)}{\mathbb{P}(D_{s_j})}$$

•
$$D$$
 - overall data gathered (traces)
 D_{s_i} - traces crossing state s_j , where $\theta_j = \theta_{s_i}$

• under Dirichlet prior, posterior update is analytic

$$p(\theta_j \mid D) \propto \theta_j^{D_{s_j}^{s_1'}} (1-\theta_j)^{D_{s_j}^{s_2'}} \theta_j^{\alpha_1-1} (1-\theta_j)^{\alpha_2-1}$$

and obtained updating hyperparameters of Dirichlet distribution, as

$$p(\theta_j | D) = \text{Dir}(\theta_j | D_{s_j} + \alpha)$$

Confidence computation

Confidence computation

Confidence computation

• compute confidence $\mathcal C$ on whether system S satisfies property ϕ as

$$\mathcal{C} = \mathbb{P}(\mathsf{S} \models \phi \mid D) = \int_{\Theta_{\phi}} p(\theta \mid D) d\theta$$

Case study: setup

• pMC model:

• specification:
$$\phi = \mathbb{P}_{>0.3}(\Box^{\leq 20} \neg (E, O))$$

Case study: setup

- goal: benchmark against statistical model checking (SMC)
- pMC model:

- specification: $\phi = \mathbb{P}_{>0.3}(\Box^{\leq 20} \neg (E, O))$
- ullet for selected pMC and property, synthesis yields Θ_ϕ (yellow set)

Case study: experiments

• data: state trajectories of different length

- attains confidence closer to "true" value than SMC
- extracts information from data more efficiently
- is more robust with limited data

Parametric Markov decision processes

$$\mathcal{G} = (\Theta, S, \boldsymbol{A}, \mathbb{T}_{\theta}, \rightarrow, \mathrm{AP}, L)$$

 $\Theta, S, \rightarrow, L$ – as before A – set of actions \mathbb{T}_{θ} – mapping $S \times A \times S \rightarrow [0, 1]$ expressed in terms of $\theta \in \Theta$

• actions can be employed to shape set Θ_{ϕ}

• actions can be employed to shape set Θ_{ϕ}

• actions can be employed to shape set Θ_{ϕ}

• actions can be employed to shape set Θ_{ϕ}

reminiscent of exploration/exploitation tradeoff in RL

Alessandro Abate, CS, Oxford

Model-based and data-driven verification

Overview of method

Strategy synthesis for experiment design

UNIVERSITY OF OXFORD

• design experiments to affect confidence calculation

 $\max \left\{ \mathbb{P}(\mathsf{S} \models \phi \,|\, D), \mathbb{P}(\mathsf{S} \not\models \phi \,|\, D) \right\}$

Strategy synthesis for experiment design

UNIVERSITY OF OXFORD

• design experiments to affect confidence calculation

$$\max \{ \mathbb{P}(\mathsf{S} \models \phi \mid D), \mathbb{P}(\mathsf{S} \not\models \phi \mid D) \}$$

• expected confidence gain at state-action (s, α) (and corresp. parameter)

$$\mathfrak{C}_{s,\alpha} = \int_{\Theta_{\phi}} \prod_{\theta_i \in \theta} p(\theta_i \mid \mathbb{E}_{s,\alpha}(D_i)) d\theta$$

Strategy synthesis for experiment design

UNIVERSITY OF OXFORD

• design experiments to affect confidence calculation

$$\max \{ \mathbb{P}(\mathsf{S} \models \phi \mid D), \mathbb{P}(\mathsf{S} \not\models \phi \mid D) \}$$

• expected confidence gain at state-action (s, α) (and corresp. parameter)

$$\mathfrak{C}_{s,\alpha} = \int_{\Theta_{\phi}} \prod_{\theta_i \in \theta} p(\theta_i \mid \mathbb{E}_{s,\alpha}(D_i)) d\theta$$

• use $\mathcal{C}_{s,\alpha}$ as a reward for (s,α)

ullet synthesise optimal strategy π for experiment design

Case study: setup

- goal: compare optimally synthesised policies vs. random/deterministic ones
- pMDP model:

• specification: $\phi = \mathbb{P}_{>0.3}(\Box^{\leq 20} \neg (E, O))$

Case study: setup

- goal: compare optimally synthesised policies vs. random/deterministic ones
- pMDP model:

- specification: $\phi = \mathbb{P}_{>0.3}(\Box^{\leq 20} \neg (E, O))$
- for selected pMDP and given ϕ , Θ_{ϕ} is shown in yellow

Case study: experiments

Case study: experiments

Extensions to other model classes

- model CO₂ dynamics, under the effect of
 - occupants: room full (F)/empty (E)
 - window: open (O)/closed (C)
 - air circulation: ON/OFF

$$x_{k+1} = x_k + \frac{\Delta}{V} \left(-\mathbb{1}_{ON} m x_k + \mu_{\{O,C\}} (C_{out} - x_k) \right) + \mathbb{1}_F C_{occ}$$

- x zone CO₂ level
- $\bullet~\Delta$ sampling time
- V zone volume
- *m* air inflow (when ON)
- μ_O air exchange with outside (when O)
- $\mu_{\rm C}$ air leakage with outside (when C)
- Cout outside CO₂ level
- C_{occ} CO₂ by occupants (when F)

Extensions to other model classes

Extensions to other model classes

• parametrised LTI model

u(t) - input

$$y(t)$$
 – system output

$$\tilde{y}(t)$$
 – measured output

- e(t) measurement noise, $e(t) \sim \mathcal{N}(0, \sigma_e^2)$
- model set $\mathfrak{G} = \{ M(\theta) \mid \theta \in \Theta \}$, where

$$M(\theta): \begin{cases} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= \theta^T x(t) \end{cases}$$

Applications of method

models for chemical reaction networks , with known stoichiometry, but with uncertain rates, expressed as pMDP

- **O** CRN can be excited by external input, pCT-MDP
- Iimited data access (only to some states) to analyse known property
- quantify confidence
- synthesise optimal experiments
- study actions tradeoff
- if stoichiometry is not perfectly known, do network synthesis?

[red text: new theory needed]

- integration of learning and verification
- verification and policy synthesis for Cyber-Physical Systems (CPS)
- application in Building Automation Systems (BAS)

Acknowledgments

My students: V. Wijesurija, N. Cauchi, E. Polgreen, A. Peruffo, K. Lesser, M. Zamani, S. Haesaert, I. Tkachev, D. Adzkiya, S. Soudjani and collaborators

Selected journal references

E. Polgreen, V. Wijesuriya, S. Haesaert and A. Abate, "Automated Experiment Design for Efficient Verification of Parametric Markov Decision Processes," QEST17, 2017.

E. Polgreen, V. Wijesuriya, S. Haesert and A. Abate, "Data-efficient Bayesian verification of parametric Markov chains," QEST16, LNCS 9826, pp. 35–51, 2016.

S. Haesaert, S.E.Z. Soudjani, and A. Abate, "Verification of general Markov decision processes by approximate similarity relations and policy refinement," SIAM Journal on Control and Optimisation, vol. 55, nr. 4, pp. 2333-2367, 2017.

I. Tkachev, A. Mereacre, J.-P. Katoen, and A. Abate, "Quantitative Model Checking of Controlled Discrete-Time Markov Processes," Information and Computation, vol. 253, nr. 1, pp. 1–35, 2017.

S. Haesaert, at al., P.M.J. V.d. Hof, and A. Abate, "Data-driven and Model-based Verification via Bayesian Identification and Reachability Analysis," Automatica, vol. 79, pp. 115–126, 2017.

S.E.Z. Soudjani and A. Abate, "Aggregation and Control of Populations of Thermostatically Controlled Loads by Formal Abstractions," IEEE Transactions on Control Systems Technology. vol. 23, nr. 3, pp. 975–990, 2015.

S.E.Z. Soudjani and A. Abate, "Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions," Logical Methods in Computer Science, Vol. 11, nr. 3, Oct. 2015.

M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros, "Symbolic control of stochastic systems via approximately bisimilar finite abstractions," IEEE Transactions on Automatic Control, vol. 59 nr. 12, pp. 3135-3150, Dec. 2014.

I. Tkachev and A. Abate, "Characterization and computation of infinite horizon specifications over Markov processes," Theoretical Computer Science, vol. 515, pp. 1-18, 2014.

S. Soudjani and A. Abate, "Adaptive and Sequential Gridding for Abstraction and Verification of Stochastic Processes," SIAM Journal on Applied Dynamical Systems, vol. 12, nr. 2, pp. 921-956, 2013.

A. Abate, et al., "Approximate Model Checking of Stochastic Hybrid Systems," European Journal of Control, 16(6), 624-641, 2010.

A. Abate, et al., "Probabilistic Reachability and Safety Analysis of Controlled Discrete-Time Stochastic Hybrid Systems," Automatica, 44(11), 2724-2734, Nov. 2008.

Thank you for your attention

For more info: aabate@cs.ox.ac.uk