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Automated formal verification: successes and frontiers

automated, sound, formal

industrial impact in verification of

protocols, hardware circuits, and software

asserts properties over given model of a system

scalable and useful on “unsophisticated” models
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Automated formal verification: pushing the envelope

verification of physical systems (cyber-physical systems)

dynamical models with uncertainty, noise (for CPS)
bridging the gap between data and models
principled integration of learning and verification
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Building automation systems: an exemplar of CPS

cyber-physical systems: integration of physical/analogue with cyber/digital

building automation systems as a CPS exemplar

smart energy initiatives at Oxford CS
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Building automation systems - a CPS exemplar

Building automation system setup in rooms 478/9 at Oxford CS

advanced modelling for smart buildings

application: certifiable energy management
1 control of temperature, humidity, CO2
2 model-based predictive maintenance of devices
3 fault-tolerant control
4 demand-response over smart grids
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Building automation systems - problem setup

model CO2 dynamics, under the effect of
1 occupants: room full (F)/empty (E)
2 window: open (O)/closed (C)
3 air circulation: ON/OFF

(F,C) (F,O)

(E,C) (E,O)

xk+1 = xk +
∆
V

(
−1ONmxk + µ{O,C}(Cout − xk)

)
+ 1FCocc

x - zone CO2 level

∆ - sampling time

V - zone volume

m - air inflow (when ON)

µO - air exchange with outside (when O)

µC - air leakage with outside (when C)

Cout - outside CO2 level

Cocc - CO2 by occupants (when F)
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model CO2 dynamics, under the effect of
1 occupants: room full (F)/empty (E)
2 window: open (O)/closed (C)
3 air circulation: ON/OFF

(F,C) (F,O)

(E,C) (E,O)

xk+1 = xk +
∆
V

(
−1ONmxk + µ{O,C}(Cout − xk)

)
+ 1FCocc

Parameter Value

∆ 15 min
V 288 m3

m 0.25 m3/min
µO 0.1667 m3/min
µC 0.01 m3/min

Cout 375 ppm
Cocc 0.4 ppm/min
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Building automation systems - problem setup

model CO2 dynamics, under the effect of
1 occupants: room empty E
2 window: closed C
3 air circulation: ON

(F,C) (F,O)

(E,C) (E,O)

xk+1 = xk +
∆
V

(−mxk + µC(Cout − xk)) + 0 · Cocc
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Windows (open, closed)
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Building automation systems - problem setup

model CO2 dynamics, under the effect of
1 occupants: room full (F)/empty (E)
2 window: open (O)/closed (C)
3 air circulation: OFF
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Learning and verification: state of art and objective

inputs

noise

system

noise

outputs

data

data-driven analysis

model learning (with data), and

model-based verification
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Overview of method

parameter
synthesis

property φ model pMC

Bayesian inference
over parameters

data from system S

C = P(S |= φ)
confidence

computation

Θφ

D

p(θ|D
)
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Parametric Markov chains

parameter
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property φ model pMC
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Parametric Markov chains

G = (Θ, S, Tθ ,→, AP, L)

S – set of states

Tθ – mapping S× S→ [0, 1] expressed in terms of θ ∈ Θ
Θ – set of all possible valuations of θ, vector of parameters

→ – starting states

L – labelling function, mapping states into 2AP, AP alphabet

(F,C) (F,O)

(E,C) (E,O)

0.75

1− 0.75− θ1

θ1

0.25

1− 0.25− θ1

θ2 θ2

1− θ2 1− θ2

θ1

Θ = [0, 0.25]× [0, 1]
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Parametric Markov chains

G = (Θ, S, Tθ ,→, AP, L)

S – set of states

Tθ – mapping S× S→ [0, 1] expressed in terms of θ ∈ Θ
Θ – set of all possible valuations of θ, vector of parameters

→ – starting states

L – labelling function, mapping states into 2AP, AP alphabet

denote by M(θ) ∈ G a model parameterised by θ ∈ Θ
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parameter
synthesis

property φ model pMC

Bayesian inference
over parameters

data from system S

C = P(S |= φ)
confidence

computation

Θφ

D

p(θ|D
)
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property φ specified in PCTL, e.g.

φ = P≥0.99(�
≤20 safe), φ = P>0.5(safe U reach), safe, reach ∈ AP

probabilistic model checking PCTL properties over Markov chains
input: Markov chain (S, T), PCTL formula φ
output: Sat(φ) = {z ∈ S : z |= φ}

tools: PRISM, STORM, . . .

classify models in Θ according to property of interest φ,

that is
synthesise parameters θ ∈ Θ s.t. M(θ) satisfies φ:

Θφ = {θ ∈ Θ : M(θ) |= φ} ⊆ Θ

0 1

1

parameter set Θ

Alessandro Abate, CS, Oxford Model-based and data-driven verification slide 10 /20



← set Θφ

Parameter synthesis

property φ specified in PCTL, e.g.

φ = P≥0.99(�
≤20 safe), φ = P>0.5(safe U reach), safe, reach ∈ AP

classify models in Θ according to property of interest φ, that is

synthesise parameters θ ∈ Θ s.t. M(θ) satisfies φ:

Θφ = {θ ∈ Θ : M(θ) |= φ} ⊆ Θ

0 1

1

parameter set Θ

Alessandro Abate, CS, Oxford Model-based and data-driven verification slide 10 /20



parameter
synthesis

property φ model pMC

Bayesian inference
over parameters

data from system S

C = P(S |= φ)
confidence

computation

Θφ

D

p(θ|D
)
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Bayesian inference

p(θj | D) =
P(D | θj)p(θj)

P(D)

=
∏s′∈S Tθ(sj, s′)

Ds′
sj p(θj)

P(Dsj)

D – overall data gathered (traces)
Dsj – traces crossing state sj, where θj = θsj

p(θj) – prior distribution

∏s′∈S Tθ(sj, s′)
Ds′

sj – likelihood, multinomial distribution at state sj
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Bayesian inference

p(θj | D) =
P(D | θj)p(θj)

P(D)

=
∏s′∈S Tθ(sj, s′)

Ds′
sj p(θj)

P(Dsj)

D – overall data gathered (traces)
Dsj – traces crossing state sj, where θj = θsj

select as conjugate prior the Dirichlet distribution

p(θj) = Dir(θj | α) ∝ θα1−1
j (1− θj)

α2−1

for pair (θj, 1− θj), with α = (α1, α2) hyperparameters
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Bayesian inference

p(θj | D) =
P(D | θj)p(θj)

P(D)

=
∏s′∈S Tθ(sj, s′)

Ds′
sj p(θj)

P(Dsj)

D – overall data gathered (traces)
Dsj – traces crossing state sj, where θj = θsj

under Dirichlet prior, posterior update is analytic

p(θj | D) ∝ θ
D

s′1
sj

j (1− θj)
D

s′2
sj θα1−1

j (1− θj)
α2−1

and obtained updating hyperparameters of Dirichlet distribution, as

p(θj|D) = Dir(θj | Dsj + α)
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parameter
synthesis

property φ model pMC

Bayesian inference
over parameters

data from system S

C = P(S |= φ)
confidence

computation

Θφ

D

p(θ|D
)
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Confidence computation

compute confidence C on whether system S satisfies property φ as

C = P(S |= φ |D) =
∫

Θφ

p(θ | D)dθ

0 1

1
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Confidence computation
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Confidence computation

compute confidence C on whether system S satisfies property φ as

C = P(S |= φ |D) =
∫

Θφ

p(θ | D)dθ

0 1
x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x x
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Case study: setup

goal: benchmark against statistical model checking (SMC)

pMC model:

(F,C) (F,O)

(E,C) (E,O)

0.75

1− 0.75− θ1

θ1

0.25

1− 0.25− θ1

θ2 θ2

1− θ2 1− θ2

θ1

0 1 · 10−22 · 10−23 · 10−24 · 10−25 · 10−26 · 10−27 · 10−28 · 10−29 · 10−2 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

θ1

θ 2

specification: φ = P>0.3(�≤20 ¬(E, O))

for selected pMC and property, synthesis yields Θφ (yellow set)
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Case study: experiments
data: state trajectories of different length

SMC

this
work

attains confidence closer to “true” value than SMC
extracts information from data more efficiently
is more robust with limited data
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Parametric Markov decision processes

G = (Θ, S, A, Tθ ,→, AP, L)

Θ, S,→, L – as before
A – set of actions
Tθ – mapping S× A× S→ [0, 1] expressed in terms of θ ∈ Θ

(E, O)

(F, O)(F, C)

(E, C)

1− θ21− θ2

(1− 0.75
−θ1)

(1− 0.25
−θ1)

1− 0.35 1− 0.15

0.35

0.75

0.15
0.25

θ1 θ1

θ2 θ2

fon

fon

foff

foff
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Dual role of actions in pMDP
actions can be employed to shape set Θφ

0 1

1

shape set Θφ

actions can be chosen to affect confidence level C

0 1
x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x x

integral = confidence level

reminiscent of exploration/exploitation tradeoff in RL
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Overview of method

parameter
synthesis

property φ model pMC

Bayesian inference
over parameters

data from system S

C = P(S |= φ)
confidence

computation

Θφ

D

p(θ|D
)
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Overview of method

parameter
synthesis

property φ model pMDP

strategy
synthesis

generate data
from system S

Bayesian inference
over parameters

confidence
computationC = P(S |= φ)

Θφ

π D
p(θ|D)

p(θ|D)
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Strategy synthesis for experiment design

design experiments to affect confidence calculation

max {P(S |= φ |D), P(S 6|= φ |D)}

expected confidence gain at state-action (s, α) (and corresp. parameter)

Cs,α =
∫

Θφ
∏
θi∈θ

p(θi | Es,α(Di))dθ

use Cs,α as a reward for (s, α)

synthesise optimal strategy π for experiment design
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Case study: setup

goal: compare optimally synthesised policies vs. random/deterministic ones

pMDP model:

(E, O)

(F, O)(F, C)

(E, C)

1− θ21− θ2
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−θ1)

(1− 0.25
−θ1)
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0
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0.55

0.6

0.65

0.7
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0.8

0.85
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0.95

1

θ1

θ 2

specification: φ = P>0.3(�≤20 ¬(E, O))

for selected pMDP and given φ, Θφ is shown in yellow
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Case study: experiments
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Case study: experiments
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Extensions to other model classes

model CO2 dynamics, under the effect of
1 occupants: room full (F)/empty (E)
2 window: open (O)/closed (C)
3 air circulation: ON/OFF

(F,C) (F,O)

(E,C) (E,O)

xk+1 = xk +
∆
V

(
−1ONmxk + µ{O,C}(Cout − xk)

)
+ 1FCocc

x - zone CO2 level

∆ - sampling time

V - zone volume

m - air inflow (when ON)

µO - air exchange with outside (when O)

µC - air leakage with outside (when C)

Cout - outside CO2 level

Cocc - CO2 by occupants (when F)
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Extensions to other model classes

parameter
synthesis

property φ model pLTI

strategy
synthesis

generate data
from system S

Bayesian inference
over parameters

confidence
computationC = P(S |= φ)

Θφ

π D
p(θ|D)

p(θ|D)
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Extensions to other model classes

parametrised LTI model

u(t) – input

y(t) – system output

ỹ(t) – measured output

e(t) – measurement noise, e(t) ∼ N(0, σ2
e )

model set G = {M(θ) | θ ∈ Θ}, where

M(θ) :
{

x(t + 1) = Ax(t) + Bu(t)
y(t) = θTx(t)
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[red text: new theory needed]

Applications of method

B + E

A + C

A B

D

models for chemical reaction networks , with known stoichiometry,
but with uncertain rates, expressed as pMDP

1 CRN can be excited by external input, pCT-MDP

2 limited data access (only to some states) to analyse known property

3 quantify confidence

4 synthesise optimal experiments

5 study actions tradeoff

6 if stoichiometry is not perfectly known, do network synthesis?
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Take away message

integration of learning and verification

verification and policy synthesis for Cyber-Physical Systems (CPS)

application in Building Automation Systems (BAS)
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Thank you for your attention

For more info: aabate@cs.ox.ac.uk
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