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Automated formal verification: successes and frontiers

@ automated, sound, formal
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Automated formal verification: successes and frontiers

@ automated, sound, formal

@ industrial impact in verification of

protocols, hardware circuits, and software

@ asserts properties over given model of a system

@ scalable and useful on “unsophisticated” models
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Automated formal verification: pushing the envelope

e verification of physical systems ( )
e dynamical models with uncertainty, noise (for )
e bridging the gap between data and models
e principled integration of learning and verification
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Building automation systems: an exemplar of CPS

° . integration of physical/analogue with cyber/digital

@ building automation systems as a exemplar
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Building automation systems: an exemplar of CPS

° : integration of physical/analogue with cyber/digital

@ building automation systems as a exemplar

@ smart energy initiatives at Oxford CS
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Building automation systems - a CPS exemplar

.

Building automation system setup in rooms 478/9 at Oxford CS

@ advanced modelling for smart buildings
@ application: certifiable energy management
@ control of temperature, humidity, CO,
© model-based predictive maintenance of devices
© fault-tolerant control
@ demand-response over smart grids
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Building automation systems - problem setup

@ model CO;, dynamics, under the effect of

@ occupants: room full (F)/empty (E)
@ window: open (O)/closed (C)
@ air circulation: ON/OFF

A
Y1 =X+ (—]IOmek + po,cy (Cout — xk)) + 1pCoce
x - zone CO; level
A - sampling time

V' - zone volume
H @ m - air inflow (when ON)
@ jip - air exchange with outside (when O)

@ jic - air leakage with outside (when C)

@ Cyyt - outside CO, level
@ Cycc - COy by occupants (when F)
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Building automation systems - problem setup

@ model CO;, dynamics, under the effect of

@ occupants: room full (F)/empty (E)
@ window: open (O)/closed (C)
@ air circulation: ON/OFF

A
Xkp1 = X+ (—JIOmek + pio,cy (Cout — xk)) + 1pCoce

\%4
@ @ Parameter Value
A 15 min
1% 288 m3
m 0.25 m3/min
H @ Uo 0.1667 m3/min
Uc 0.01 m3/min
Cout 375 ppm

Coce 0.4 ppm/min
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Building automation systems - problem setup

@ model CO;, dynamics, under the effect of

© occupants: room empty E
@ window: closed C
© air circulation: ON

A
X1 = Xk + - (*mxk + ,”C(Cout - xk)) 40 Coce
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Building automation systems - problem setup

@ model CO;, dynamics, under the effect of

© occupants: room full F
@ window: closed C
© air circulation: ON

A
Xky1 = X + v (*mxk + ,uC(Cout - xk)) + Coce

€O levels Fan (on, off)
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Building automation systems - problem setup

@ model CO;, dynamics, under the effect of

© occupants: room full F
@ window: open O
© air circulation: ON

A
X1 = X + v (*mxk + ;”O(Cout - xk)) + Coce

€O, levels Fan (on, off)
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Building automation systems - problem setup

@ model CO;, dynamics, under the effect of

© occupants: room empty E
@ window: closed C
© air circulation: ON
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Building automation systems - problem setup

@ model CO, dynamics, under the effect of

@ occupants: room full (F)/empty (E)
@ window: open (O)/closed (C)
© air circulation:

model with hybrid dynamics
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Building automation systems - problem setup

@ model CO, dynamics, under the effect of
@ occupants: room full (F)/empty (E)

@ window: open (O)/closed (C)
© air circulation:
model with hybrid dynamics
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Learning and verification: state of art and objective

noise noise data

inputs outputs
system

data-driven analysis
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Learning and verification: state of art and objective

noise noise l data
inputs outputs
system 5
model

data-driven analysis
model learning (with data), and

model-based verification
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Learning and verification: state of art and objective

inputs

noise noise l data
outputs
system 5
model

disconnect between data-driven learning and model-based verification
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Learning and verification: state of art and objective

noise noise l data
inputs outputs
system 5
model

disconnect between data-driven learning and model-based verification

principled integration of learning and verification
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Overview of method

property ¢ model pMC data from system S

e :

parameter Bayesian inference
synthesis over parameters

@4; A&
\ A‘)
e — P - ¢) | confidence ]
computation
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Parametric Markov chains

property ¢ model pMC data from system S

e :

parameter Bayesian inference
synthesis over parameters

@4; A&
\ A‘)
e — P - ¢) | confidence ]
computation
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Parametric Markov chains

9 - (®/ S/ ']]-—‘9/ _>/ AP/ L)

S — set of states

Ty — mapping S x S — [0, 1] expressed in terms of 6 € @
©® — set of all possible valuations of 6, vector of parameters
— — starting states

1-0.75—06, 1-025-06;

0.25
73 61 02 61

H @

1-6, 1—6,

® = [0,0.25] x [0,1]
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Parametric Markov chains

9 = (®/ S/ TQI —, AP/ L)

S — set of states

Ty — mapping S X S — [0, 1] expressed in terms of 6 € ©

® - set of all possible valuations of 8, vector of parameters
— — starting states

L - labelling function, mapping states into 27, AP alphabet

e denote by M(0) € G a model parameterised by 6 € ®
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property ¢ model pMC data from system S

T :

parameter Bayesian inference
synthesis over parameters

@4; A&
\ »‘)
e—PGSE9) | confidence ]

computation
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@ property ¢ specified in PCTL, e.g.
¢ = P>0.99(05% safe), ¢ = P~gs5(safe U reach), safe, reach € AP

@ probabilistic model checking PCTL properties over Markov chains
e input: Markov chain (S, T), PCTL formula ¢
o output: Sat(¢) ={z€ S:z | ¢}

@ tools: PRISM, STORM, ...
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Parameter synthesis

@ property ¢ specified in PCTL, e.g.

¢ = ]1’20‘99(D§20 safe), ¢ = P~gs5(safe U reach), safe, reach € AP

o classify models in ® according to property of interest ¢, that is
@ synthesise parameters 6 € © s.t. M(0) satisfies ¢:

Op={0cO@: M0) =9} CO

& set Oy

0 1
parameter set ©
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property ¢ model pMC data from system S

e :

parameter Bayesian inference
synthesis over parameters

@4; A&
\ »‘)
e—PGSE9) | confidence ]

computation
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Bayesian inference

_ P(D[0))p(8))

0:| D)=
- p(6;)
]P(Dsj)
e D - overall data gathered (traces)
Ds], — traces crossing state S, where Gj = GS/.
e p(0;) — prior distribution
° — likelihood, multinomial distribution at state Sj
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Bayesian inference

pley| ) = 2 og D

p(0;)

]P(Dsj)

@ D - overall data gathered (traces)
Ds], — traces crossing state S, where Gj = 95/.

o select as conjugate prior the Dirichlet distribution
},(9/) = Dir(Hj | 0() x 9;‘1*] (1 9/_)1\3*1

for pair (6;,1—0;), with & = (a1, a2) hyperparameters
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Bayesian inference

P(D | 6;)p(0;)

0;| D) =
p(6;1 D) = =5y
_ p(9;)
]P(Dsj)
@ D — overall data gathered (traces)
Ds/. — traces crossing state s;, where 9]' = 95].
@ under Dirichlet prior, posterior update is analytic
p(gl | D) o Hz/\l 1(1 o (_)/)1\2 1

and obtained updating hyperparameters of Dirichlet distribution, as

p(0;|D) = Dir(6; | Ds; + «)
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property ¢ model pMC data from system S

e :

parameter Bayesian inference
synthesis over parameters

@4; A&
\ »‘)
e—PGE9) | confidence ]

computation
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Confidence computation
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Confidence computation
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Confidence computation

@ compute confidence C on whether system S satisfies property ¢ as

e=1P(S :¢|D>:/@¢p<9|mde
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Case study: setup

@ goal: benchmark against statistical model checking (SMC)
o pMC model:

1-075-6; 1-025-06;

*) @

1*92 1—92

e specification: ¢ = P~q3(052° ~(E,0))
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Case study: setup

@ goal: benchmark against statistical model checking (SMC)
o pMC model:

1-075-6; 1-025-06;

0.25
0> 91 [ 91

*) @

1*62 1—92

e specification: ¢ = P~o3(052° ~(E,0))
o for selected pMC and property, synthesis yields @ (yellow set)
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Case study: experiments

@ data: state trajectories of different length

SMC

this
work

@ attains confidence closer to “true” value than SMC
@ extracts information from data more efficiently
@ is more robust with limited data
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Parametric Markov decision processes

§=(0,S,A,Ty,—, AP, L)

®,S,—, L — as before
A — set of actions
Ty — mapping S x A x S — [0, 1] expressed in terms of 6 € ®
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Dual role of actions in pMDP
@ actions can be employed to shape set ©

1

1

shape set Oy

@ actions can be chosen to affect confidence level C
A

integral = confidence level
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Dual role of actions in pMDP
@ actions can be employed to shape set ©

1

0 1
shape set Oy

@ actions can be chosen to affect confidence level C
A

0 1
integral — confidence level

Alessandro Abate, CS, Oxford Model-based and data-driven verification

slide 15 /20



Dual role of actions in pMDP
@ actions can be employed to shape set ©

1

0 1
shape set Oy

@ actions can be chosen to affect confidence level C
A

0 1
integral — confidence level

reminiscent of exploration/exploitation tradeoff in RL
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Overview of method

property ¢ model pMC data from system S

e :

parameter Bayesian inference
synthesis over parameters

@4; A&
\ A‘)
e — P - ¢) | confidence ]
computation
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Overview of method

generate data
property ¢| |model pMDP from system S

S AR

parameter Oy strategy \ 7(0|D) Bayesian inference

synthesis ) L synthesis ) over parameters
confidence

C=P(SE9¢) | computation | p(6ID)
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Strategy synthesis for experiment design

@ design experiments to affect confidence calculation

max{P(S = ¢|D),P(S ¢ |D)}
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Strategy synthesis for experiment design

@ design experiments to affect confidence calculation

max{P(S = ¢|D),P(S ¢ |D)}

@ expected confidence gain at state-action (s, &) (and corresp. parameter)

Csn = /@ H p(8; | Eso(D;))do

¢ 9[69
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Strategy synthesis for experiment design

design experiments to affect confidence calculation

max{P(S = ¢|D),P(S ¢ |D)}

expected confidence gain at state-action (s, a) (and corresp. parameter)

Csn = /@ H p(8; | Eso(D;))do

¢ 9[69

use Cs, as a reward for (s,a)

synthesise optimal strategy 7t for experiment design
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Case study: setup

@ goal: compare optimally synthesised policies vs. random/deterministic ones
@ pMDP model:

e specification: ¢ = IP~o3(05?° —~(E,0))
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Case study: setup

@ goal: compare optimally synthesised policies vs. random/deterministic ones
@ pMDP model:

e specification: ¢ = IP~o3(05?° —~(E,0))
o for selected pMDP and given ¢, O is shown in yellow
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Case study: experiments
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Case study: experiments

OXFORD

HHBQ

Synthesised strategy 7t Deterministic strategy
e I e
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Extensions to other model classes

@ model CO, dynamics, under the effect of

@ occupants: room full (F)/empty (E)
@ window: open (O)/closed (C)
@ air circulation: ON/OFF

A
Yer1 = Xkt 77 (—HOmek + pio,c} (Cout — xk)) + 1 Cocc

x - zone CO; level

V' - zone volume
H @ m - air inflow (when ON)
@ Jp - air exchange with outside (when O)

@ jic - air leakage with outside (when C)

°
@ A - sampling time
°
°

@ Cyyt - outside CO, level
@ Cycc - COy by occupants (when F)
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Extensions to other model classes

generate data
property ¢ model pLTI from system S

S AR

parameter Oy strategy \ 7(0|D) Bayesian inference

synthesis ) L synthesis ) over parameters
confidence

C=P(SE9¢) | computation | p(6ID)
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Extensions to other model classes

OXFORD

@ parametrised LTI model

u(t)

u(t) — input

y(t) — system output

7(t) — measured output

e(t) — measurement noise, e(t) ~ N(0,02)

@ model set G = {M(0) | 6 € O}, where

) x(t+1) = Ax(t) + Bu(t)
e { " 2o
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Applications of method

I‘i
A+E\ /D

models for chemical reaction networks , with known stoichiometry,
but with uncertain rates, expressed as pMDP

© CRN can be excited by external input, pCT-MDP

@ limited data access (only to some states) to analyse known property
© quantify confidence

@ synthesise optimal experiments

@ study actions tradeoff

@ if stoichiometry is not perfectly known, do network synthesis?

[red text: new theory needed)]
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Take away message

@ integration of learning and verification
o verification and policy synthesis for Cyber-Physical Systems (CPS)

@ application in Building Automation Systems (BAS)
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Thank you for your attention

For more info: aabate@cs.ox.ac.uk
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