Probabilistic Logic Programming
and its Applications

Luc De Raedt
with many slides from Angelika Kimmig

-
......
......

The Turing, London, September | 1, 2017

A key question in Al:

Dealing with uncertainty

Reasoning with
relational data

Learning

A key question in Al:

Dealing with uncertainty

Reasoning with

relational data

* logic

* databases

® programming

Learning

A key question in Al:

Dealing with uncertainty

* probability theory
* graphical models

Reasoning with

relational data

* logic

* databases

® programming

Learning

A key question in Al:

Dealing with uncertainty

* probability theory
* graphical models

Reasoning with

relational data

* logic

* databases

® programming

Learning

® parameters
® structure

A key question in Al:

Dealing with uncertainty

* probability theory
* graphical models

Reasoning with

relational data

* logic

* databases

® programming

Learning

® parameters
® structure

Statistical relational learning, probabilistic logic
learning, probabilistic programming, ...

2

Networks of Uncertain
Information

is related to

is located in phenotype

participates in

participates in homologgroup

belongs to

is homologous to |is found in
\ 4

codes for
cellular refers to

biological component

process

is found in

participates in

q Iilct))mme@/ molecular -

atabase ,

Helsinki function has subsumes,
http://biomine.cs.helsinki.fi \ 3 interacts with

Biomine

network
-]

Biomine

network
-]

Biomine Network

pdarucipdaies_

0.265

-participates/in
0.188
participates_in
0.190
Notch receptor processing

is_homologous_to BiologicalProcess

0.5612 GO:GO:0007220
<participates_in :
0.197 |V
-participates_in
0.212 | -participates_in : . - :
0.210 -Is_found_in i wases in
0.259 . 0.530198
\1 <participates _in
/ | ‘ 0.219
-participates_in '
e O.Iggo > -participates_in -partic
0.207 0
-1s_found_in
0.271 /|
-participates _in
0.229
» . participates_in
0.192
presenilin 2 &

Gene is_hon
EntrezGene:81751 |

Notch receptor processing

BiologicalProcess
GO:GO:0007220

_in
0.219

parueipaies,

tegral to nuclear inner

in
CellularComponent
GO:GO

N

A

\
A

presenilin 2

Gene
EntrezGene: 8| /51

presep

EntrezGen:81751

¢

is_hon

Biomine Network

pdrucipdies,_

/ o BiologicaIProces
icipates_in e
0.190
. eceptor pr
3 BlologlcaIPr
GO:GO: 0007220

-participates_in <
0.220 N 3"223 "

GO GO:0005639
. participates_in
0.219
' icipates i
0.220
-1s_found _in
0.271
/ o'

Gene

-

.‘

presenilin 2
Gene
EntrezGene:81751

is_hon

Biomine Network

TP usipEies
‘ 0.265

participates_in
0.190

eceptor processing
is_homologous_to BiologicalProcess
0.612 GO:G0O:0007220

<participates_in
0.197

integral to nflqlear inner
CellularConiponent

L~

e different types of nodes & links |
e automatically extracted from text
°| databases, ...
* probabilities quantifying source
reliability, extractor confidence, ...
* similar in other contexts, e.g.,

linked open data, NELL@QCMU, ...

5

N

Example:
Information Extraction

Recently-Learned Facts Refresh

instance iteration date learned confidence

kelly andrews is a female 826 29-mar-2014 98.7 @ @
investment next year is an economic sector 829 10-apr-2014 95.3 f@ @
shibenik is a geopolitical entity that is an organization 829 10-apr-2014 97.2 @ @F
quality web design work is a character trait 826 29-mar-2014 91.0 {5 @
mercedes benz cls by carlsson is an automobile manufacturer 829 10-apr-2014 95.2 '—J@ QF
social work is an academic program at the university rutgers university 827 02-apr-2014 93.8 {5 @
dante wrote the book the divine comedy 826 29-mar-2014 93.8 '—J@ QF
willie_aames was born in the city los_angeles 831 16-apr-2014 100.0 '—J@ QF
kitt peak is a mountain in the state or province arizona 831 16-apr-2014 96.9 f@ QF
greenwich is a park in the city london 831 16-apr-2014 100.0 @ @

6 NELL: http://rtw.ml.cmu.edu/rtw/

Example:
Information Extraction

Recently-Learned Facts Refresh

instance iteration date learned confidence

kelly andrews is a female 826 29-mar-2014 98.7 @ @
investment next year is an economic sector 829 10-apr-2014 95.3 f@ @
shibenik is a geopolitical entity that is an organization 829 10-apr-2014 97.2 @ @F
quality web design work is a character trait 826 29-mar-2014 91.0 {5 @
mercedes benz cls by carlsson is an automobile manufacturer 829 10-apr-2014 95.2 '—J@ QF
social work is an academic program at the university rutgers university 827 02-apr-2014 93.8 {5 @
dante wrote the book the divine comedy 826 29-mar-2014 93.8 '—J@ QF
willie_aames was born in the city los_angeles 831 16-apr-2014 100.0 '—J@ QF
kitt peak is a mountain in the state or province arizona 831 16-apr-2014 96.9 f@ QF
greenwich is a park in the city london 831 16-apr-2014 100.0 @ @

instances for many
different relations
6 NELL: http://rtw.ml.cmu.edu/rtw/

Example:
Information Extraction

Recently-Learned Facts ™ Refresh

instance iteration date learned confidence

kelly andrews is a female 826 29-mar-2014 98.7 @ @
investment next year is an economic sector 829 10-apr-2014 95.3 f@ @
shibenik is a geopolitical entity that is an organization 829 10-apr-2014 97.2 @ @F
quality web design work is a character trait 826 29-mar-2014 91.0 {5 @
mercedes benz cls by carlsson is an automobile manufacturer 829 10-apr-2014 95.2 '—J@ QF
social work is an academic program at the university rutgers university 827 02-apr-2014 93.8 {5 @
dante wrote the book the divine comedy 826 29-mar-2014 93.8 '—J@ QF
willie_aames was born in the city los_angeles 831 16-apr-2014 100.0 '—J@ QF
kitt peak is a mountain in the state or province arizona 831 16-apr-2014 96.9 f@ QF
greenwich is a park in the city london 831 16-apr-2014 100.0 @ @

instances for many degree of certainty
different relations

6 NELL: http://rtw.ml.cmu.edu/rtw/

Dynamic networks

Travian: A massively multiplayer
real-time strategy game

Can we build a model
of this world ?
Can we use it for playing
better ?

,;“'-. ,,"..};..
s " SV
o "’:__’ ’.-;‘:' ’
~>‘ "» ";‘. ’.'- ",
o < ImSAr »
/ p : N L i
-~ ’“"\,‘.» & 8 g?”
3 & e, Qe L Tt
-~ ,"‘..,_’ Y 5 O
A - 4 A 3 S e
Qe A SRS > NS > <L
S L e < .
e ¢ w s »
~_",‘ &

% 3 N 2 . [Thon et al,MLJ | 1]

Dynamic networks

Travian: A massively multiplayer
real-time strategy game

Can we build a model
of this world ?
Can we use it for playing
better ?

it ot
& P
R b T
. L e
/ RS S '
11- & ,-;-_ :,'.P. q * , .’~,_’.
RN .
g Tt “a - B it
e - il ‘-"’ - e 3‘4.l'-.":-/"'$:}
- .-.‘, S i; .»,» L, o ¥ .::’..
& o .-{'F‘—_..»)‘) o’ ‘. e > S "~.?~:0>
e ¢ W :;‘-; :"V L - s £
< “"" . ©
;Y e w©e e 4
- P o
- - ~
~’ -
-
< - < *o
- - -

[Thon et al, ML] | 1]

Answering Probability
Questions

Mike has a bag of marbles with 4 white, 8 blue, and
6 red marbles. He pulls out one marble from the
bag and it is red. What is the probability that the
second marble he pulls out of the bag is white”

A
'L

The answer 1s 0.235941.]?

[Dries et al., [JCAI 17]

Synthesising inductive data models

Data Model Inductive Model

oW 4

fe_me : sert Page Layout Formulas Dat
A B . D

3 Time | Indeperden Dependent . - *

: M s Discover patterns and rules =-1223.86+1.63%C13

€ 2 4700 6,465

JEEs present in a Data Model

8 4 5844 8,265

9 5 5192 1257

10 6 5,086 7,084

n 7 5511 7784

12 8 6107 8,724

13 9 5062 6,992

14 10 4,505 6822

15 1 5576 7.049

16 12 6847 9,650

17 13 700 ?

18 14 ?

17 commmagn

Apply patterns to make predictions
and support decisions

1. The synthesis system “learns the learning task”. It
Identifies the right learning tasks and learns appropriate
Inductive Models

2. The system may need to restructure the data set
before Inductive Models synthesis can start

3. A unifying IDM language for a set of core patterns and .,..,.

models will be developed — based on Problog .-}.'-.'.:,’ o s
-.==,;.=,Q I'C

e s [B .::..'.':o:::?

Common theme

Dealing with
uncertainty

Reasoning with
relational data

Learning

Statistical relational learning, probabilistic logic
learning, probabilistic programming, ...

|0

Common theme

Reasoning with
relational data

Dealing with
/\ uncertainty

* many different formalisms
* our focus: probabilistic
(logic) programming

Learning

Statistical relational learning, probabilistic logic
learning, probabilistic programming, ...

|10

The (Incomplete) SRL Alphabet Soup

[names in alphabetical order]

"99 "03

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Al

The (Incomplete) SRL Alphabet Soup

[names in alphabetical order]

"90 "95 "99 "03

First KBMC approaches:

Bresse,

Bacchus,
Charniak,
Glesner,
Goldman,

Koller,

Poole, Wellmann

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Al

The (Incomplete) SRL Alphabet Soup

Relational Gaussian Processes

[names in alphabetical order]

"90

Infinite Hidden Relational Models

10 PSL: Broecheler, Getoor, Mihalkova

‘93°94°9596 97 "99°00 ‘02°03 07 RDNs: Jensen, Neville

I N N I —

Relational Markov Networks

11 1 1

Object-Oriented Bayes Nets

First KBMC hppgroacheg:

gresse, Prob. Horn
acchus,)
Charniak, Abduction: Poole
Glesner,

Goldman

Koller,
Poole, Wellmapn

|

Logical Bayesian Networks:
Blockeel,Bruynooghe,
Fierens,Ramon,

BUGS/Plates

1BC(2): Flach,

LOHMMs: De Raedt, Kersting,
Raiko

Lachiche

| ‘ RMMs: Anderson,Domingos,

Weld

'PLP: Haddawy, Ngo

| | I Multi-Entity Bayes Nets

BLPs: Kersting, De Raedt SPOOK

[| —v

DAPER

PRNIs: Friedman,Getoor,Koller,

Pfeffer,Segal, Taskar

PRISM: Kameya, Sato'

Church

SLPs: Cussens,Muggleton

E|Probabi|istic Entity-Relationship Models‘

Prob. CLP: Eisele, Riezler I_ CLP(BN): Cussens,Page,

Qazi,Santos Costa

Many different angles

® Probabilistic programming Logical and
Relational Learning

® | ogic programming and probabilistic databases

® (ProbLog and DS as representatives)

® Functional and imperative (Church as representatives)

® Statistical relational Al and learning

Statistical Relational

. Artificial Intelli
® Markov Logic SO
and Compm’u.’io;:
® Relational Bayesian Networks (and variants) Lo o
Sriraam Natarajan

David Poole

Probabilistic Logic Programs

® devised by Poole and Sato in the 90s.
® built on top of the programming language Prolog
® upgrade directed graphical models

® combines the advantages / expressive power of
programming languages (Turing equivalent) and graphical
models

® (Generalises probabilistic databases (Suciu et al.)

® |mplementations include: PRISM, ICL, ProbLog, LPADs, CP-
logic, Dyna, Pita, DC, ...

13

Roadmap

Modeling
Reasoning
Learning
Dynamics

Decisions

Part | : Modeling

ProbLog

probabilistic Prolog

Dealing with
uncertainty

Reasoning with
relational data

Learning

16 http://dtai.cs.kuleuven.be/problog/

ProbLog

probabilistic Prolog

Dealing with
uncertainty

Prolog / logic
programming
Learning

stress (ann) .
influences (ann,bob) .

influences (bob,carl).

smokes (X) :- stress (X).
smokes (X) :-
influences (Y,X), smokes(Y).

16 http://dtai.cs.kuleuven.be/problog/

ProbLog

probabilistic Prolog

Dealing with
uncertainty

Prolog / logic
programming

Learning

stress (ann) .
influences (ann,bob) .
influences (bob,carl).
one worid
smokes (X) :- stress (X).
smokes (X) :-

influences (Y,X), smokes(Y).

16 http://dtai.cs.kuleuven.be/problog/

ProbLog

probabilistic Prolog 0.8::stress (ann) .

0.6::influences (ann,bob) .
0.2::influences (bob,carl).

atoms as random
variables

Prolog / logic
programming

Learning

stress (ann) .
influences (ann,bob) .
influences (bob,carl).
one worid
smokes (X) :- stress (X).
smokes (X) :-

influences (Y,X), smokes(Y).

16 http://dtai.cs.kuleuven.be/problog/

PrO b LOg several possible worlds

probabilistic Prolog 0.8::stress (ann) .

0.6::influences (ann,bob) .
0.2::influences (bob,carl).

atoms as random
variables

Prolog / logic
programming

Learning

stress (ann) .
influences (ann,bob) .
influences (bob,carl).
one worid
smokes (X) :- stress (X).
smokes (X) :-

influences (Y,X), smokes(Y).

16 http://dtai.cs.kuleuven.be/problog/

ProbLog

probabilistic Prolog

several possible worlds

0.8::stress(ann) .
0.6::influences (ann,bob) .
0.2::influences (bob,carl).

atoms as random

Distribution Semantics [Sato, ICLP 95]:

probabilistic choices + logic program
— distribution over possible worlds

Prolog / logic
programming

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (X) :- stress (X).
smokes (X) :-
influences (Y,X), smokes (Y

variables

Learning

one world

) .
16 http://dtai.cs.kuleuven.be/problog/

P ro b LOg several possible worlds

PrObabiIiStiC Prolog 0.8::stress(ann).

0.6::influences (ann,bob) .
0.2::influences (bob,carl).

atoms as random

Distribution Semantics [Sato, ICLP 95]:
probabilistic choices + logic program

— distribution over possible worlds

variables

Prolog / logic
programming

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

parameter learning,
one world adapted relational

smokes (X) :- stress (X).))

smokes (X) :- learning techniques

influences (Y,X), smokes(Y).

16 http://dtai.cs.kuleuven.be/problog/

ProbLog by example:

A bit of gambling

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

ProbLog by example:

A bit of gambling

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

probabilistic fact: heads is true with
0.4 :: heads. probability 0.4 (and false with 0.6)

ProbLog by example:

A bit of gambling

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

0.4 :: heads. annotated disjunction: first ball is red
with probability 0.3 and blue with 0.7

0.3 :: col(l,red); 0.7 :: col(l,blue).

ProbLog by example:

A bit of gambling

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

0.4 :: heads.

.3 :: col(l,red); 0.7 :: col(l,blue).
.2 col(2,red); 0.3 :: col(2,green);
0.5 :: col(2,blue).
annotated disjunction: second ball is red with
probability 0.2, green with 0.3, and blue with 0.5

0
0

|7

ProbLog by example:

A bit of gambling

® toss (biased) coin & draw ball from each urn

® | win if (heads and a red ball)|or (two balls of same color)

o O
N W

win

: : heads.

col(l,red); 0.7
col(2,red); 0.3
0.5

:- heads, col(,red).

|7

col (1,blue).
col (2,green) ;
col (2,blue).

logical rule encoding
background knowledge

ProbLog by example:

A bit of gambling

® toss (biased) coin & draw ball from each urn

® | win if (heads and a red ball) or|(two balls of same color)

0.4 :: heads.

0.3 col(l,red); 0.7

0.2 col(2,red); 0.3
0.5

win :- heads, col(,red).

win :- col(1,C), col(2,C).

|7

col (1,blue).
col (2,green) ;
col (2,blue).

logical rule encoding
background knowledge

ProbLog by example:

A bit of gambling

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

:: heads. probabilistic choices

col (1l,red); col (1,blue).

0.7
col(2,red); 0.3 :: col(2,green);
0.5

col (2,blue).

win :- heads, col(,red).

win :- col(1l,C), col(2,c). consequences

Questions

0.4 :: heads.

0.3 :: col(l,red); 0.7 :: col(l,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
win :- heads, col(,red).

win :- col(1,C), col(2,C).
® Probability of win!
® Probability of win given col (2,green)!

® Most probable world where win is true!

Questions

0.4 :: heads.

0.3 :: col(l,red); 0.7 :: col(l,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
win :- heads, col(,red).

win :- col(1,C), col(2,C).
marginal probability
® Probability oflwin)
query
® Probability of win given col (2,green)!

® Most probable world where win is true!

Questions

0.4 :: heads.

0.3 :: col(l,red); 0.7 :: col(l,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).
win :- heads, col(,red).

win :- col(1,C), col(2,C).
marginal probability
® Probability of win!
conditional probability
® Probability of win given/col (2 ,green)!
evidence
® Most probable world where win is true!

o O

win
win

:: col(l,red); 0.7
:: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

N W

Questions

: . heads.

:: col(l,blue).

:- heads, col(,red).
:- col(1,C), col(2,C).

marginal probability
® Probability of win!
conditional probability

® Probability of win given col (2,green)!

® Most probable world where win is true!
MPE inference

Possible Worlds

0.4 :: heads.

col (1l,blue).

0.3 :: col(l,red); 0.7
0.2 :: 0.3 :: col(2,green); 0.5 :: col(2,blue).

col (2,red) ;

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

Possible Worlds

0.4 :: heads.

col (1l,blue).

0.3 :: col(l,red); 0.7
0.2 :: 0.3 :: col(2,green); 0.5 :: col(2,blue).

col (2,red) ;

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

Possible Worlds

0.4 :: heads.

col (1l,blue).

0.3 :: col(l,red); 0.7
0.2 :: 0.3 :: col(2,green); 0.5 :: col(2,blue).

col (2,red) ;

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

Possible Worlds

0.4 :: heads.

0.3 :: col(l,red); 0.7 :: col(l,blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

0.4 x0.3

H©®

Possible Worlds

0.4 :: heads.

0% - ol (_1'_rar~]): 0O 7 - ol l_1'_h'l11a),
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

0.4 x0.3 x0.3

H@C

Possible Worlds

0.4 :: heads.

N -+ ~Aal l_1'rnr~'lv\- N 7 - ~nl l'1"h'|11n'\
0.2 :: col(Z2,red); 0.3 :: col(Z2,green); 0.5 :: col(2,blue).
win :- heads, col(_,red).

win :- col(1,C), col(2,C).

0.4 x0.3 x0.3
H@Q@E
\'A"

Possible Worlds

0.4 :: heads.

0.3 :: col(l,red); 0.7 :: col(l,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 ::
win :- heads, col(_,red).

win :- col(1,C), col(2,C).

0.4 x0.3 x0.3
H@E
\'A%

(1-0.4)x0.3 x0.2

R LR
W

20

col (2,blue) <- true.

(1-0.4)x0.3 x0.3

OC

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

All Possible VWorlds

0.024 0.036 0.056 0.084

H QO 00 |HOO 00
W W W
0.036 0.054 0.084 0.126
HOO 06 HOO 006
W
0.060 0.090 0.140 0.210
HOO 00 [HOO G@'
W W W

21

“=alational Al

MOSt |||<e|)’ WOrld MPE Inference
where win is true’

0.024 0.036 0.056 0.084
H OO 00 HOO 00
W W W
0.036 0.054 0.084 0.126
HQO 00 |HOO 006
W
0.060 0.090 0.140 0.210
H QO 00 |HOO GO'
W W W

22

“=alational Al

MOSt |||<e|)’ WOrld MPE Inference
where win is true’

0.024 0.036 0.056 0.084
H OO 00 |HOO® 00
W W W
0.036 0.054 0.084 0.126
H QO 00 |HOO 006
W
0.060 0.090 0.140 0.210
H QO 00 |HOO GO'
W W W

22

P(win)=

0.024

0.036

0.036

0.054

0.060

0.090

23

De Raedt, Kerstin

0.056

fffffffff

0.084

HO O

0.140

Probability

0.084

0.126

0.210

w’

P(win)=

0.024

0.036

0.036

00
W

0.054

0.060

0.090

23

De Raedt, Kerstin

0.056

fffffffff

HOO®
W

0.084

HO O

0.140

HOO
W

Probability

0.084

0.126

0.210

'

0.024

0.036

0.060

0.054

0.090

23

De Raedt, Kerstin

fffffffff

0.084

0.140

Probability

0.084

0.126

0.210

'

P(win|col(2,green))=?

0.024

H QOO
W

0.036

0.036

00
W

HQO
W

0.054

0.060

H QO
W

0.090

24

De Raedt, Kersting, Natar=>+ “+ical Relational Al

0.056

HOO®
W

0.084

HO O

0.140

HOO
W

Conditional
Probability

0.084

0.126

0.210

w’

P(win|col(2,green))=>/>
=P(winacol(2,green))/P(col(2,green), Probability

0.024

H QOO
W

0.036

0.036

00
W

HQO
W

0.054

0.060

H QO
W

0.090

24

De Raedt, Kersting, Natar=>+ “+ical Relational Al

0.056

HOO®
W

0.084

HO O

0.140

HOO
W

Conditional

0.084

0.126

0.210

w’

De Raedt, Kersting, Natar=>+ “+ical Relational Al

P(win|col(2,green))=>/> Conditional
=P(winAcol(2,green))/P(col(2,green), Probability

0.024 0.036 0.056 0.084
H OO 00 |HOO® 00
W W W
0.036 0.054 0.084 0.126
H QO 00 || IHOO 006
W
0.060 0.090 0.140 0.210
H QO 00 |HOO GO'
W W W

24

De Raedt, Kersting, Natar=>+ “+ical Relational Al

24

P(win|col(2,green))=>/> Conditional
=0.036/0.3=0.12 Fropadility
0.024 0.036 0.056 0.084
H QO 00 HOO 00
W W W
0.036 0.054 0.084 0.126
H QO 00 || HOO 006
W
0.060 0.090 0.140 0.210
H QO 00 (HOO GQ'
W W W

Distribution Semantics

(with probabilistic facts)

[Sato, ICLP 95]

query sum over possible worlds

\ / where Q is true

PQ = >» |l»H)]]1-p05

FUREQ jek feF
/ \ probability of
subsef:.of. Prolog possible world
probabilistic rules

facts

25

Flexible and Compact Relational
Model for Predicting Grades

S

e
“"Program” Abstraction:

S, C logical variable representing students, courses
the set of individuals of a type is called a population

Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:

* for every student s, there is a random variable Int(s)

* for every course c, there is a random variable Di(c)

* for every s, c pair there is a random variable Grade(s,c)
* all instances share the same structure and parameters

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Al

ProbLog by example:

Grading

0.

4 .

ProbLog by example:

Grading

int(S) :- student(S).

(O I

ProbLog by example:

Grading

:: 1nt(S) :- student(S).
:: diff (C) :- course(C).

(O I

ProbLog by example:

Grading

:: 1nt(S) :- student(S).
:: diff (C) :- course(C).

ProbLog by example:

Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna) . student (bob).

ProbLog by example:

Grading

:: 1int (S)

student (john) .
course (ai) .

: - student (S).

0.4 :
0.5 :: diff(C) :- course(C).

student (anna) .
course (ml) .

student (bob) .
course (cs) .

ProbLog by example:

Grading

:: 1int (S)

student (john) .
course (ai) .

: - student (S).

0.4 :
0.5 :: diff(C) :- course(C).

student (anna) .
course (ml) .

student (bob) .
course (cs) .

ProbLog by example:

Grading

:: 1int (S)

:

: - student (S).

0.4 :
0.5 :: diff(C) :- course(C).

student (john) .

course (ai) .

gr(S,C,a)

student (anna) . student (bob) .
course (ml) . course (cs) .
:— int(S), not diff (C).

ProbLog by example: ‘E

Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna) . student (bob).
course (ai) . course (ml) . course (cs) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(Ss,C,b);0.2::gr(S,C,c) :-

ProbLog by example: ‘E

Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna) . student (bob).
course (ai) . course (ml) . course (cs) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(Ss,C,b);0.2::gr(S,C,c) :-
int(S), diff(C).

ProbLog by example: .@
Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna) . student (bob).
course (ai) . course (ml) . course (cs) .

gr(S,C,a) :- int(S), not diff(C).

0.3::gr(s,C,a); 0.5::gr(Ss,C,b);0.2::gr(S,C,c) :-
int(S), diff(C).

0.1::gr(s,C,b); 0.2::gr(Ss,C,c); 0.2::gr(S,C,£f) :-

ProbLog by example:

Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna).
course (ai) . course (ml) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(Ss,C,b);0.2::gr(S,C,c)

int(S), diff(C).
0.1::gr(s,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f)

student (S) ,

course (C) ,

student (bob) .
course (cs) .

ProbLog by example: .@
Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna) . student (bob).
course (ai) . course (ml) . course (cs) .

gr(S,C,a) :- int(S), not diff(C).

0.3::gr(s,C,a); 0.5::gr(Ss,C,b);0.2::gr(S,C,c) :-
int(S), diff(C).

0.1::gr(s,C,b); 0.2::gr(Ss,C,c); 0.2::gr(S,C,£f) :-
student (S) , course (C),
not int(S), not diff (C).

ProbLog by example:

Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna).
course (ai) . course (ml) .

student (bob) .
course (cs) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(Ss,C,b);0.2::gr(S,C,c)

int(S), diff(C).

0.1::gr(s,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f)
student (S) , course (C),
not int(S), not diff (C).

0.3::gr(S,C,c); 0.2::gr(S,C,f)

ProbLog by example:

Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna).
course (ml) .

course (ai) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(Ss,C,b);0.2::gr(S,C,c)

int(S), diff(C).
0.1::gr(s,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f)
course (C) ,
not diff (C).
0.3::gr(S,C,c); 0.2::gr(S,C,f)

student (S) ,
not int(S),

not int(S),

diff (C).

student (bob) .
course (cs) .

ProbLog by example:

Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna).
course (ml) .

course (ai) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(Ss,C,b);0.2::gr(S,C,c)

int(S), diff(C).
0.1::gr(s,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f)
course (C) ,
not diff (C).
0.3::gr(S,C,c); 0.2::gr(S,C,f)

student (S) ,
not int(S),

not int(S),

diff (C).

student (bob) .
course (cs) .

ProbLog by example:

Grading

0.4 :: int(S) :- student(S).
0.5 :: diff(C) :- course(C).

student (john) . student (anna).
course (ml) .

course (ai) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(Ss,C,b);0.2::gr(S,C,c)

int(S), diff(C).
0.1::gr(s,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f)
course (C) ,
not diff (C).
0.3::gr(S,C,c); 0.2::gr(S,C,f)

student (S) ,
not int(S),

not int(S),

diff (C).

student (bob) .
course (cs) .

ProbLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f).
excellent(S) :- student(S), not grade(S,C,G), below(G,a).
excellent(S) :- student(S), grade(S,C,a).

0.4 :: int(S) :- student(S).

0.5 :: diff(C) :- course(C).

student (john) . student (anna). student (bob).
course (ai) . course (ml) . course (cs) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-
int(S), diff (C).
0.1::gr(s,C,b); 0.2::gr(s,C,c); 0.2::gr(S,C,£f) :-
student (S), course(C),
not int(S), not diff (C).
0.3::gr(s,C,c); 0.2::gr(S,C,£f) :-
not int(S), diff (C).

ProbLog by example:

Rain or sun?

29

ProbLog by example:

Rain or sun?

29

y
o>

ProbLog by example:

Rain or sun?

»

day O

0.5: :weather (sun, 0)

; 0.5::weather(rain,0) <- true.

29

ProbLog by example:

Rain or sun?

04\ 04\ 04\ 04\ 04\ 04\
? » » » » > 9

day O day | day 2 day 3 day 4 day 5

0.5::weather(sun,0) ; 0.5::weather(rain,0) <- true.

29

ProbLog by example:

Rain or sun?

04\ 04\ 04\ 04\ 04\ 04\
? » » » » > 9

day O day | day 2 day 3 day 4 day 5

0.5::weather(sun,0) ; 0.5::weather(rain,0) <- true.

29

ProbLog by example:

Rain or sun?

—> —> —> —> —> —>

>< >< S 2 2 S

day O day | day 2 day 3 day 4 day 5 day

0.5::weather(sun,0) ; 0.5::weather(rain,0) <- true.

29

ProbLog by example:

Rain or sun?

—> —> —> —> —> —>
day O day | day 2 day 3 day 4 day 5 day
0.5::weather(sun,0) ; 0.5::weather(rain,0) <- true.
0.6::weather(sun,T) ; 0.4::weather(rain,T)

<- T>0, Tprev is T-1, weather (sun, Tprev).

29

ProbLog by example:

Rain or sun?

—> —> —> —> —> —>
day O day | day 2 day 3 day 4 day 5 day
0.5::weather(sun,0) ; 0.5::weather(rain,0) <- true.
0.6::weather(sun,T) ; 0.4::weather(rain,T)

<- T>0, Tprev is T-1, weather (sun, Tprev).
0.2::weather(sun,T) ; 0.8::weather(rain,T)

<- T>0, Tprev is T-1, weather (rain, Tprev).

29

ProbLog by example:

Rain or sun?

—> —> —> —> —> —>
day O day | day 2 day 3 day 4 day 5 day
0.5::weather(sun,0) ; 0.5::weather(rain,0) <- true.
0.6::weather(sun,T) ; 0.4::weather(rain,T)

<- T>0, Tprev is T-1, weather (sun, Tprev).
0.2::weather(sun,T) ; 0.8::weather(rain,T)

<- T>0, Tprev is T-1, weather (rain, Tprev).

infinite possible worlds! BUT: finitely many partial
worlds suffice to answer any given ground query

29

o Seiur et Al 2011

Probabilistic Databases

Dealing with
uncertainty

Reasoning with
relational data

30

Learning

De Raedt, Kersting, Natarajar[S(ﬁIEiﬁat'é%caélreEtenlal IA]

Probabilistic Databases

Dealing with
uncertainty

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

cityln
city country
bornin london uk
person city york uk
ann london paris usa
2D | yerk relational
eve new york
tom | paris database

Learning

De Raedt, Kersting, Natarajar[ScﬁIEiﬁat'éltcaélreEt'Onrl IA]

Probabilistic Databases

Dealing with
uncertainty

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

cityln

onhe world city

country

bornln

person

city

ann
bob
eve

tom

london

york

new york

paris

london
york

paris

uk
uk

usa

relational
database

Learning

Probabilistic Databases

De Raedt, Kersting, Natarajar[ScHIEiijat'é%caélreEthlal IA]

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

one world
bornin
person city
ann london
bob york
eve |new york
tom paris

bornin cityln
person city P city country P
ann london 0,87 london uk 0,99
bob york 0,95 york uk 0,75
eve new york 0,9 paris usa 0,4
tom | pars | 0»6 tuples as random
variables
cityln
city country
london uk
york uk
paris usa
relational
database .
30 Learning

De Raedt, Kersting, Natarajar[ScHIEiﬁat'é%caéllteEthlal IA]

Probabilistic Databases

several possible worlds

select x.person, y.country
from bornIn x, cityIn y
where x.city=y.city

one world
bornin
person city
ann london
bob york
eve |new york
tom paris

bornin cityln
person city P city country P
ann london 0,87 london uk 0,99
bob york 0,95 york uk 0,75
eve new york 0,9 paris usa 0,4
tom | pars | 9-8 tuples as random
variables
cityln
city country
london uk
york uk
paris usa
relational
database .
30 Learning

De Raedt, Kersting, Natarajar[ScaIEiﬁat'é%caélreEthlal IA]

Probabilistic Databases

several possible worlds

selec

from bornIn x, cityIn y

bornin cityln
person city P city country P
ann london 0,87 london uk 0,99
bob york 0,95 york uk 0,75
o . 0,9 paris usa 0,4
probabilistic tables + database queries | .,
’ tuples as random

— distribution over possible worlds

where x.city=y.city

-l

cityln

city

country

one world
bornin
person city
ann london
bob york
eve |new york
tom paris

londo
york

paris

n uk
uk

usa

relational
database

30

variables

Learning

Example:
Information Extraction

Recently-Learned Facts ' Refresh

instance iteration date learned confidence

kelly andrews is a female 826 29-mar-2014 98.7 @ @
investment next year is an economic sector 829 10-apr-2014 95.3 f@ @
shibenik is a geopolitical entity that is an organization 829 10-apr-2014 97.2 @ @F
quality web design work is a character trait 826 29-mar-2014 91.0 {5 @
mercedes benz cls by carlsson is an automobile manufacturer 829 10-apr-2014 95.2 '—J@ QF
social work is an academic program at the university rutgers university 827 02-apr-2014 93.8 {5 @
dante wrote the book the divine comedy 826 29-mar-2014 93.8 '—J@ QF
willie_aames was born in the city los_angeles 831 16-apr-2014 100.0 '—J@ QF
kitt peak is a mountain in the state or province arizona 831 16-apr-2014 96.9 f@ QF
greenwich is a park in the city london 831 16-apr-2014 100.0 @ @

instances for many degree of certainty
different relations

3t NELL: http://rtw.ml.cmu.edu/rtw/

Distribution Semantics

¢ probabilistic choices + their consequences
® probability distribution over possible worlds
® how to efficiently answer questions’

® most probable world (MPE inference)

® probability of query (computing marginals)

® probability of query given evidence

32

http://dtai.cs.kuleuven.be/problog

—— A

I\‘_-/ & hitps://dtal.cs kuleuven,be/problog/Iindex htmi & Q, Search

Introduction

on.

:_;\Tr\b;'r\' o i YW rYryy:s rT~<\~ aro Lf"\r\ r\rt\(r';r v g *-,T'r\" QAT r*“ ‘r"‘. ":;—w‘r‘ aro '_-;r"w\‘: oy watn r\r \C:;r\ “[_‘,:_‘
COGDNSUC (nguu'u‘._:d S dle L);.-:_I_/‘-JJ(AY\? WINICH SOMmMe Of the 1aCLSs are annoiidieG withl proocadies

Problog Is a tool that allows you to intuitively bulld programs that do not only encode complex interactions between a large sets of heterogenous components b
uncertainties that are present in real-life situations.

The engine tackles several tasks such as computing the marginals given evidence and leaming from (partial) interpretations. ProblLog is a suite of efficient algorithm:
tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inference tasks to well-:
weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

ProblLog makes It easy to express complex, probabllistic models.

0.3::stress(X) :- person(X).

Part |l : Inference

34

Inference

The challenge : disjoint sum problem

: theads (1) .

: theads (2) . .

. :heads (3) . win < h(l) v (h(2) A h(3))
win :- heads (1) .

win :- heads(2), heads(3).

o O O
O b

P(win) = P(h(1) Vv (h(2) A h(3))
=/=P(h(l)) + P(h(2) A h(3))
should be
= P(h(l)) + P(h(2) A h(3)) - P(h(1) Ah(2) A h(3))

35

Inference
Map to Weighted Model Counting Problem and Solver

0.4::heads (1) .

0.7::heads (2).

0.5::heads(3). win < h(l) v (h(2) A h(3))
win :- heads (1) .

win :- heads(2), heads(3).

Ground out (=win V h(1) V h(2))
A (win V h(l) V h(3))
+ Put formula in CNF format A (win V =h(1))
+ weights A (win V =h(2) vV =h(3))
+ call WMC h(l) > 04 h(2) =07 h@3)—05

sh(l) = 0.6 =h(2) = 0.3 =h(3) = 0.5

36

Weighted Model Counting

WMC (¢ Z Hw

Ivi=e lely

Weighted Model Counting

propositional formula in conjunctive normal form (CNF)

WMC\ Z Hw

IviEep lely

37

Weighted Model Counting

propositional formula in conjunctive normal form (CNF)

WMC\ Z Hw

Ivi=e lely
interpretations (truth
value assignments) of
propositional variables

37

Weighted Model Counting

propositional formula in conjunctive normal form (CNF)

WMC\ Z Hw

Ivi=e lely

/ wel ight

interpretations (truth of literal
value assignments) of
propositional variables

37

Weighted Model Counting

propositional formula in conjunctive normal form (CNF)
given by SRL model & query

WMC\ Z Hw

IviEep lely

/ wel ight

interpretations (truth of literal
value assignments) of
propositional variables

37

Weighted Model Counting

propositional formula in conjunctive normal form (CNF)
given by SRL model & query

WMC\ Z Hw

Ivi=e lely

/ wel ight

interpretations (truth of literal
value assignments) of
propositional variables

possible worlds

37

Weighted Model Counting

propositional formula in conjunctive normal form (CNF)
given by SRL model & query

WMC\ Z Hw

Ivi=e lely

/ welght
interpretations (truth of literal
value assignments) of for p:f,
propositional variables w(f) = p

w(not f) = |-p

possible worlds

37

' P(Q) = (f) 11 1—r(f)
Weight¢ @ 3 Lo Il

propositional formula in conjunctive normal form (CNF)
given by SRL model & query

WMC\ >] w

IviEep lely
/ welght
interpretations (truth of literal
value assignments) of for p:f,
propositional variables w(f) = p
w(not f) = |-p

possible worlds

37

Weighted Model Counting

® Simple WMC solvers based on a generalisation of DPLL
algorithm for SAT (Davis Putnam Logeman Loveland algorithm)

® Current solvers often use knowledge compilation (is also state

of the art for inference in graphical models) — here an OBDD,
many variations s-dDNNF SDDs, ...

win < h(1) V (h(2) A h(3))

Weighted Model Counting

® Simple WMC solvers based on a generalisation of DPLL
algorithm for SAT (Davis Putnam Logeman Loveland algorithm)

® Current solvers often use knowledge compilation (is also state
of the art for inference in graphical models) — here an OBDD,

many variations s-dDNNF SDDs, ...

o
L)
N

h (3)

A2

A
A

o

win < h(1) V (h(2) A h(3))

Weighted Model Counting

® Simple WMC solvers based on a generalisation of DPLL
algorithm for SAT (Davis Putnam Logeman Loveland algorithm)

® Current solvers often use knowledge compilation (is also state
of the art for inference in graphical models) — here an OBDD,

many variations s-dDNNF SDDs, ...
h(1l)
ﬁﬂsegi:::>

, true
h(2)
(" h(3)
L 4
win < h(1) V (h(2) A h(3)) 0 |win?| |

Weighted Model Counting

® Simple WMC solvers based on a generalisation of DPLL
algorithm for SAT (Davis Putnam Logeman Loveland algorithm)

® Current solvers often use knowledge compilation (is also state

of the art for inference in graphical models) — here an OBDD,
many variations s-dDNNF SDDs, ...

h(1l)
0.6, ~—10.4
P(win) = e
" h(2)
probability of 03 7
reaching |-leaf Che)
: Q: 0.5\ !
win < h(1) v (h(2) A h(3)) 0 |win?| |

More inference

 Many variations / extensions
* Approximate inference
e Lifted inference

* infected(X) :- contact(X,Y), sick(Y).

Part lll : Learning
a. Parameters

40

Parameter Learning

e.g., webpage classification model

for each CLASS I, CLASS2 and each WORD

?? ::link_class(Source, Target, CLASS |,CLASS2).
?? ::word_class(WORD,CLASS).

class(Page,C) :- has_word(Page,W), word class(W,C).

class(Page,C) .- links_to(OtherPage,Page),
class(OtherPage,OtherClass),
link_class(OtherPage,Page,OtherClass,C).

4]

Sampling
Interpretations

Sampling
Interpretations

.................. n
.
.

- TP -,
.
.

Parameter Estimation

Parameter Estimation

count(fact is true)

fact) =
p(fact) Number of interpretations

43

Learning from partial
Interpretations

Not all facts observed
Soft-EM

use expected count instead of count

P(Q |E) -- conditional queries !

44 [Gutmann et al, ECML | |; Fierens et al, TPLP 4]

Part lll : Learning
b. Rules / Structure

Information Extraction in NELL

bwitter Refresh |

Recently-Learned Facts

instance iteration date learned confidence

kelly andrews is a female 826 29-mar-2014 98.7 28 &
investment next year is an economic sector 829 10-apr-2014 95.3 f@ QF
shibenik is a geopolitical entity that is an organization 829 10-apr-2014 97.2 @ QF
quality web design work is a character trait 826 29-mar-2014 91.0 @ QF
mercedes benz cls by carlsson is an automobile manufacturer 829 10-apr-2014 95.2 @ QF
social work is an academic program at the university rutgers university 827 02-apr-2014 93.8 f@ QF
dante wrote the book the divine comedy 826 29-mar-2014 93.8 @ QF
willie_aames was born in the city los_angeles 831 16-apr-2014 100.0 @ QF
kitt peak is a mountain in the state or province arizona 831 16-apr-2014 96.9 @ @r:
greenwich is a park in the city london 831 16-apr-2014 100.0 @ QF

instances for many degree of certainty
different relations

NELL: http://rtw.ml.cmu.edu/rtw/

ProbFOIL

 Upgrade rule-learning to a probabilistic setting
within a relational learning / inductive logic
programming setting

* Works with a probabilistic logic program instead
of a deterministic one.

* Introduce ProbFOIL, an adaption of Quinlan’s FOIL
to this setting.

* Apply to probabillistic databases like NELL

Pro Log

surfing(X) :- not pop(X) and windok(X).
surfing(X) :- not pop(X) and sunshine(X).

pop(el). windok(e1). sunshine(e1).

?-surfing(el).
no

BUH|=\=e (H does not cover e)

An [LP example

PronlLog

a probabillistic Prolog

p1:: surfing(X) :- not pop(X) and windok(X).
p2:: surfing(X) :- not pop(X) and sunshine(X).

0.2::pop(el). 0O.7:windok(e1). 0.6::sunshine(el).

?-P(surfing(el)).

gives (1-0.2) x 0.7 x p1 + (1-0.2) x 0.6 x xp2=PBUH|=e¢e)

not pop x windok x p1 + not pop x sunshine x X P

probability that the example is covered

Inductive Probabillistic Logic
Programming

Given

a set of example facts e € E together with the
probability p that they hold

a background theory B in ProblLog
a hypothesis space L (a set of clauses)

Find

' H, B, E)= ' P, (BUH =
argmhl[nZOSS(, B,) argmﬁnZ\ (B U

e, €ER

e) — pi

Adapt Rule-learner

Algorithm 1 The ProbFOIL™ learning algorithm.

1: function PROBFOIL " (target)
2: H:=90
3: while true do
4. clause :—= LEARNRULE(H, target)
tpy ; 5: if GSCORE(H) < GSCORE(H U {clause}) then
; 6.
7
8

H := H U {clause}
under- target over-
estimate probability estimate

: elsereturn H
: function LEARNRULE(H, target)
9: candidates := {x :: target < true}
10: best := (z :: target « true)
: . 11: while candidates # () do
Contlngency table. 12: next_cand = ()

13: for all = :: target + body € candidates do

nOt on |y 1 / O Val ues 14: for all refinement € p(target < body) do

15: if not REJECT(H, best, x :: target < body) then
16: nezt_cand := next_cand U {z :: target <— bodyA
. 17: refinement }
. 18: if LSCORE (H, z :: target < body A refinement) >
C Ove rn g | 19: LSCORE(H, best) then
" 20: best := (x :: target < body A refinement
use multiple rules , Dest =)
21: candidates := next_cand

tO cover an example 22: return best

lTechnical Novelty

0:: surfing(X) :- not pop(X) and windok(X).

= (p=1) . T. T

L;
li= (p=0) - D P: I zz
lz' lz
1, , L
(a) (b) (c)

ProbFOIL includes

a method to determine “optimal” p for a given rule

EXperiments

Table 4: Precision for different experimental setups and parameters (A: m = 1, p = 0.99, B: m = 1000, p = 0.90).

Setting athleteplaysforteam | athleteplayssport | teamplaysinleague | athleteplaysinleague | teamplaysagainstteam
train/test/rule A B A B A B A B A B

I: det/det/det 74.00 69.36 94.14 9347 96.29 82.15 80.95 74.14 73.40 73.86

2: det/prob/det 73.51 69.57 97.53 94.85 96.70 87.83 90.83 77.73 73.70 73.35

3: det/prob/prob 74.67 69.82 95.86 94.74 96.35 82.57 82.26 75.29 73.84 74.34

4: det/prob/prob 77.25 73.87 96.53 96.04 98.00 90.59 84.91 79.36 77.26 77.83

5: det/prob/prob 74.76 69.97 95.85 94.69 96.44 82.51 81.99 75.07 73.90 74.16

6: prob/prob/det 75.83 73.11 93.40 93.76 94.44 93.67 79.41 79.42 80.87 80.60

7: prob/prob/prob | 78.31 73.72 05.62 95.10 | 98.84 91.86 96.94 79.49 835.78 81.81

0.9375:
0.9675:
0.9375:
0.5109:

:athleteplaysforteam(A,B)
:athleteplaysforteam(A,B)
:athleteplaysforteam(A,B)
:athleteplaysforteam(A,B)

Table 3: Learned relational rules for the different predicates (fold 1).

athleteledsportsteam(A,B).

athleteledsportsteam(A,V 1), teamplaysagainstteam(B,V1).

athleteplayssport(A,V1), teamplayssport(B,V1).
athleteplaysinleague(A,V 1), teamplaysinleague(B,V1).

0.9070:

0.9070:

0.9070:

:athleteplayssport(A,B)
:athleteplayssport(A,B)

:athleteplayssport(A,B)

TTTT7T

1

athleteledsportsteam(A,V2), teamalsoknownas(V2,V 1), teamplayssport(V1,B),
teamplayssport(V2,B).
athleteplaysforteam(A,V?2), teamalsoknownas(V2,V 1), teamplayssport(V1,B),
teamplayssport(V2,B),teamalsoknownas(V1,V2).

athleteplaysforteam(A,V 1), teamplayssport(V1,B).

0.9286:
0.7868:
0.9384:
0.9024:

:athleteplaysinleague(A,B)
:athleteplaysinleague(A,B)
:athleteplaysinleague(A,B)
:athleteplaysinleague(A,B)

TTTTT

athleteledsportsteam(A,V 1), teamplaysinleague(V1,B).
athleteplaysforteam(A,V?2), teamalsoknownas(V2,V 1), teamplaysinleague(V1,B).
athleteplayssport(A,V2), athleteplayssport(V1,V2), teamplaysinleague(V1,B).

athleteplaysforteam(A,V 1), teamplaysinleague(V 1,B).

ProbFOIL

 Upgrade rule-learning to a probabilistic setting
within a relational learning / inductive logic
programming setting

* Works with a probabilistic logic program instead
of a deterministic one.

* Introduce ProbFOIL, an adaption of Quinlan’s FOIL
to this setting.

* Apply to probabillistic databases like NELL

Part IV : Dynamics

Dynamlcs Evolvmg Networks

® TJravian: A massively multiplayer real-time strategy game
® Commercial game run by TravianGames GmbH
e ~3.000.000 players spread over different “worlds”

® ~25.000 players i d
players in one wor [ThOn et al. ECML 08]

< e
- - IR
e ‘.' 5 l“.
/ - 'uf~0“_.‘ '
e S vy % !,-':"l‘
: ¥ ™ PR 5
A > B - e
o e o -~
L > s> L

C

World Dynami

Fragment of world with

~10 alliances
~200 players
~600 cities

alliances color-coded

Can we build a model
of this world ?
Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECMLOS8]

57

World Dynamics

Fragment of world with

~10 alliances
~200 players
~600 cities

alliances color-coded

Can we build a model
of this world ?
Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECMLOS8]

58

Fragment of world with

~10 alliances
~200 players
~600 cities

alliances color-coded

Can we build a model
of this world ?
Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECMLOS8]

59

Fragment of world with

~10 alliances
~200 players
~600 cities

alliances color-coded

Can we build a model
of this world ?
Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECMLOS8]

60

World Dynamics

Fragment of world with
~10 alliances
~200 players

~600 cities

alliances color-coded

Can we build a model
of this world ?
Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECMLOS8]

61

World Dynamics

Fragment of world with \
~10 alliances \
~2€(>)(())Oplayers 3 '%%‘g\ ©
~ iti | (se0
cities & \ \

alliances color-coded

g\w

Can we build a model Qe \
of this Yvorld 4 | @ @
Can we use it for playing o M/’i
7 A
better ! o D é
® |
[Thon, Landwehr, De Raedt, ECMLOS8] ﬁ
D,
@D

62

CPT-Rules

bi,...0p, > h1:p1V...Vhy :Dpm
cause effect &\

/
city(C, Owner), city(C2, Attacker), close(C, C2) — /
conquest(Attacker,C2) : p V nil : (1 —p)

conquer a city which is close)
P(conquest(), Time+5) ?
learn parameters

Thon etal MLJ I

63

Causal Probabilistic Time-

[Thon et al, MLJ | 1]

Logic (CPT-L)

2

- .
N\

*,

L
: L N
L ‘ -
Sl -
)i = \
L) D ~
‘ & /
| / M\
| ' | | !
\
! |) A
\ |
‘ ® ||
1!
: ‘{3) (
S & o ¥
- & (
® -

- ")
- -

how does the
world change
over time!

64

Causal Probabilistic Time-
Logic (CPT-L)

. .

- e '\
\

how does the
world change
over time!

0.4::conquest (Attacker,C); 0.6::nil :-

city (C,Owner) ,city(C2,Attacker) , close(C,C2).

if cause holds at time T
[Thon et al, MLJ |] 64

Causal Probabilistic Time-
Logic (CPT-L)

: & -

D how does the
A . world change
ol /N[VM) over time!

one of the effects holds at time T+

0.4::conquest (Attacker,C); 0.6::nil :-

city (C,Owner) ,city(C2,Attacker) , close(C,C2).

if cause holds at time T
[Thon et al, MLJ |] 64

Causal Probabilistic Time-
Logic (CPT-L)

: & -

D how does the
A . world change
ol /N[VM) over time!

one of the effects holds at time T+

0.4::conquest (Attacker,C); 0.6::nil :-

city (C,Owner) ,city(C2,Attacker) , close(C,C2).

if cause holds at time T
[Thon et al, MLJ |] 64

Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

65 [Gutmann et al, TPLP 1 |; Nitti et al, IROS | 3]

Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

random variable with Gaussian distribution

length (Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).

65 [Gutmann et al, TPLP 1 I; Nitti et al, IROS 3]

Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

length (Obj) ~ gau551an(6 0,0.45) :- type(Obj,glass).
; : comparing values of
~width (OBot) 2 =width (OTop) . random variables

65 [Gutmann et al, TPLP 1 I; Nitti et al, IROS 3]

Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

length (Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable (OBot,OTop) :-
~]length (OBot) 2 =~length (OTop),
~width (OBot) 2 =~width (OTop) .
ontype (Obj,plate) ~ finite ([0 : glass, 0.0024 : cup,
O : pitcher, 0.8676 : plate,
0.0284 : bowl, 0 : serving,
0.1016 : nonel])
:— obj(Obj), on(0Obj,02), type(02,plate).

random variable with

discrete distribution
65 [Gutmann et al, TPLP | |; Nitti et al, IROS 3]

Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

length (Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable (OBot,OTop) :-
~]length (OBot) 2 =~length (OTop),
~width (OBot) 2 =width (OTop) .
ontype (Obj,plate) ~ finite ([0 : glass, 0.0024 : cup,
O : pitcher, 0.8676 : plate,
0.0284 : bowl, 0 : serving,
0.1016 : nonel])
:— obj(Obj), on(0Obj,02), type(02,plate).

65 [Gutmann et al, TPLP 1 I; Nitti et al, IROS 3]

Relational State Estimation
over |ime

Magnetism scenario

® object tracking

® category estimation
from interactions

66 [Nitti et al, IROS 3]

Relational State Estimation
over |ime

Magnetism scenario

® object tracking

® category estimation
from interactions

Box scenario

® object tracking even
when invisible

® estimate spatial relations

66 [Nitti et al, IROS 3]

Magnetic scenario

3 object types: magnetic, ferromagnetic, nonmagnetic

Nonmagnetic objects do not interact

A magnet and a ferromagnetic object attract each other

B L

Magnetic force that depends on the distance

If an object is held magnetic force is compensated.

P E B
__ - =

67

v DDEWe

=

B [E &

*®0

0.0

El magnet
N ferromagnetic
Ell nonmagnetic

v DDEWe

=

B [E &

*®0

0.0

El magnet
N ferromagnetic
Ell nonmagnetic

Magnetic scenario

3 object types: magnetic, ferromagnetic, nonmagnetic

type(X), ~ finite([1/3:magnet,1/3:ferromagnetic,1/3:nonmagnetic]) «
object(X).
2 magnets attract or repulse

interaction(A,B), ~ finite([0.5:attraction,0.5:repulsion]) «
object(A), object(B), A<B,type(A), = magnet,type(B), = magnet.

Next position after attraction
pos(A),,, ~ gaussian(middlepoint(A,B),,Cov) «
near(A,B),, not(held(A)), not(held(B)),
-_> i interaction(A,B), = attr,
-- c/dist(A,B),? > friction(A),.

pos(A),,,; ~ gaussian(pos(A),,Cov) < not(attraction(A,B)).

69

Learning relational affordances

Learn probabilistic model

Learning relational

affordances
between
N — two objects
8| 5 | (learnt by experience)
From two object interactions Moldovan et al. ICRA 12, 13, 14
Generalize to N Nitti et al, ML 16, 1 7; ECAI 16

__E@

Learning relational affordances

Learn probabilistic model

Learning relational

affordances
between
N — two objects
8| 5 | (learnt by experience)
From two object interactions Moldovan et al. ICRA 12, 13, 14
Generalize to N Nitti et al, ML 16, 1 7; ECAI 16

__E@

What is an affordance !

displYgs.. displiXgs..
diStYOMain,OSec I— displYomam T ——

OMain

dIStxDMain,OSEC diSPIKc:Main

Clip 8: Relational O before (1), and E after the action execution (r).
Table 1: Example collected O, A, E data for action in Figure 8

Object Properties Action Effects

shapeo,,... : SPrism displXo,,.,. : 10.33cm

shapeops,. : sSprism tap(10) displYo,,... : —0.68cm
dist X0, .050. - 6.94cm displXo,.,. : 7.43cm
distYo,,0im.05.. - 1.90cm displYo... 1 —1.31em

® Formalism — related to STRIPS but models delta

® but also joint probability model over A, E, O

Relational Affordance Learning

- Learning the Structure of Dynamic Hybrid Relational Models
Nitti, Ravkic, et al. ECAI 2016

Captures relations/affordances

Suited to learn affordances in
robotics set-up, continuous and discrete variables

Planning in hybrid robotics domain

DDC Tree learner

Linear Gaussian (0)

Linear Gaussian (11)

Linear Gaussian (15)

Planning

* Main task: probabillistic planning
Find the best action to achieve the goal

* Discrete + continuous + relational representation

BT
R Y
i &
s
AT

[Nitti et al ECML 15, MLJ 17]

PartV : Decisions

Viral Marketing

Which advertising
strategy maximizes
expected profit?

. O

Ralph - [Van den Broeck et al,
: AAAI 10]

Viral Marketing

decide truth values of
some atoms

Ralph - [Van den Broeck et al,
: AAAI 10]

D T ProblLog {*2

*3

person(1l) .
person (2) .
person(3) .
person (4) .

friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

76

D IProblLog

:: marketed(P) :- person(P).

decision fact: true or false?

76

person(1l) .
person (2) .
person(3) .
person (4) .

friend(1l,2).
friend(2,1).
friend(2,4) .
friend(3,4).
friend(4,2).

DTProblLog {,*2

? :: marketed(P) :- person(P).

0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).

person(1l) .
buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X) . person(3) .

person (4) .

probabilistic facts friend(1,2).

. friend(2,1).
+ logical rules friend(2,4).

friend(3,4).
friend(4,2).

76

DTProblLog {,*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).
person(1l) .
buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X) . person (3) .
person (4) .
buys (P) => 5 :- person(P).
marketed (P) => -3 :- person(P). friend(1,2).
friend(2,1).
utility facts: cost/reward if true friend(2,4).

friend(3,4).
friend(4,2).

76

DTProblLog {,*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).
person(1l) .
buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person(2) .
buys (X) :- marketed(X), buy marketing(X) . person(3) .
person (4) .
buys (P) => 5 :- person(P).
marketed (P) => -3 :- person(P). friend(1,2).

friend(2,1).
friend(2,4) .
friend(3,4).
friend(4,2).

76

DTProblLog {,*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).
person(1l) .
buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person(2) .
buys (X) :- marketed(X), buy marketing(X) . person(3) .
person (4) .
buys (P) => 5 :- person(P).
marketed (P) => -3 :- person(P). friend(1,2).

friend(2,1).
friend(2,4) .
friend(3,4).
friend(4,2).

76

DTProblLog {,*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).
person(1l) .
buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person(2) .
buys (X) :- marketed(X), buy marketing(X) . person(3) .
person (4) .
buys (P) => 5 :- person(P).
marketed (P) => -3 :- person(P). friend(1,2).

friend(2,1).
friend(2,4) .
friend(3,4).
friend(4,2).

marketed (1) marketed (3)

76

DTProblLog {,*2

? :: marketed(P) :- person(P).

0.3 :: buy trust(X,Y) :- friend(X,Y). *3

0.2 :: buy marketing(P) :- person(P).
person(1l) .

buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person (2) .

buys (X) :- marketed(X), buy marketing(X) . person(3) .
person (4) .

buys (P) => 5 :- person(P).

marketed (P) => -3 :- person(P). friend(1,2).
friend(2,1).
friend(2,4) .
friend(3,4).
friend(4,2).

marketed (1) marketed (3)

bt(2,1) bt (2,4) bm (1)

76

DTProblLog {,*2

? :: marketed(P) :- person(P).

0.3 :: buy trust(X,Y) :- friend(X,Y). *3

0.2 :: buy marketing(P) :- person(P).
person(1l) .

buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person (2) .

buys (X) :- marketed(X), buy marketing(X) . person(3) .
person (4) .

buys (P) => 5 :- person(P).

marketed (P) => -3 :- person(P). friend(1,2).
friend(2,1).
friend(2,4).
friend(3,4).
friend(4,2).

marketed (1) marketed (3)
bt(2,1) bt (2,4) bm (1)

buys (1) buys (2)

76

DTProblLog {,*2

? :: marketed(P) :- person(P).
0.3 :: buy trust(X,Y) :- friend(X,Y). *3
0.2 :: buy marketing(P) :- person(P).
person(1l) .
buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X) . person (3) .
person (4) .
buys (P) => 5 :- person(P).
marketed (P) => -3 :- person(P). friend(1,2).
friend(2,1).
utility =—-3+-3+5+5=4 friend(2,4).
ope friend(3,4).
probability = 0.0032 friend(4,2).
marketed (1) marketed (3)
bt(2,1) bt (2,4) bm (1)

buys (1) buys (2)

76

D TProblLog {*2

? :: marketed(P) :- person(P).

0.
0.

3 :: buy trust(X,Y)
2 :: buy marketing(P)

:— friend(X,Y).
:— person(P).

*3

buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y).
buys (X) :- marketed(X), buy marketing(X).

buys (P) => 5

marketed (P) => -3

:— person(P).

:— person(P).

utility =—-3+-3+5+5=4
probability = 0.0032

‘ marketed (1)
bt(2,1)
buys (1)

marketed (3)
bt (2,4)
buys (2)

bm (1)

76

person(1l) .
person (2) .
person(3) .
person (4) .

friend(1l,2).
friend(2,1).
friend(2,4) .
friend(3,4).
friend(4,2).

world contributes
0.0032%4 to
expected utility of

strategy

4
D IProblLog %\,*2

? :: marketed(P) :- person(P).

0.3 :: buy trust(X,Y) :- friend(X,Y). *
0.2 :: buy marketing(P) :- person(P).
person(1l) .
buys (X) :- friend(X,Y), buys(Y), buy trust(X,Y). person (2) .
buys (X) :- marketed(X), buy marketing(X) . person (3) .
person (4) .
buys (P) => 5 :- person(P).
marketed (P) => -3 :- person(P). friend(1,2).

friend(2,1).
friend(2,4) .
friend(3,4).
friend(4,2).

task: find strategy that maximizes expected utility
solution: using ProblLog technology

76

Phenetic

Probabilistic Sub-network
network generation inference

Interaction network

S
¢ "ﬁt"‘vh ol
T 45
£y N
£ - o
. o -
f‘&i- ! ” o ..,
b~ ' £ 1S
% ‘4‘{ 4 S | L__V L.V ps -~ +* %
"}‘1 g - ~ 3 . b v
&.

"y .+ % Inferred
&_, V _ sub-network

Molecular profiling Gene list

Figure 1. Overview of PheNetic, a web service for network-based interpretation of ‘omics” data. The web service uses as input a genome wide interaction
network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide
variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into
a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This
probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off
between linking as many genes as possible from the gene list and selecting the least number of edges.

e Causes: Mutations * Interaction network: _
+ Al related to similar + 3063 nodes Goal: connect causes to effects
" through common subnetwork
phenotype * Genes * = Find mechanism

* Effects: Differentially expressed < Proteins

genes * 16794 edges

e 27 000 cause effect pairs * Molecular interactions
* Uncertain

* Techniques:
 DTProblLog
« Approximate inference

77
[De Maeyer et al., Molecular Biosystems |3, NAR [5]

Applications

Medical reasoning (Peter Lucas et al)

Knowledge base construction and Nell (De Raedt et al)
Biology/Phenetic (De Maeyer et al, NAR 15)

Robotics (Nitti et al., ML) 16, ML} 17, Moldovan et al. RA 17)

Activity Recognition (Skarlatidis et al, TPLP 14)

A key question in Al:

Dealing with uncertainty

* probability theory
* graphical models

Reasoning with

relational data

* logic

* databases

® programming

Learning

® parameters
® structure

Statistical relational learning, probabilistic logic
learning, probabilistic programming, ...

79

A key question in Al:

Dealing with uncertainty
/\ * probability theory

lels

Reas

relal o Our answer: probabilistic (logic) programming
* |o] = probabilistic choices + (logic) program

* d4 * Many languages, systems, applications, ...

* prl ® ...and much more to do!

) &

Statistical relational learning, probabilistic logic
learning, probabilistic programming, ...

79

Further Reading

® |ogic and Learning

Logical and
Relational Learning

® Probabilistic programming

® |ogic programming and probabilistic databases

® (ProbLog and DS as representatives)

® http://dtai.cs.kuleuven.be/problog/ —

® check also [DR & Kimmig, MLJ 15] E L
tihcial Intelligence
Logic, I "'G/’.'t/)i/."l_v,

and Computation

® Statistical relational Al and learning

Luc de Raedt
Kristian Kersting
Srienam Natarajan

® Markov Logic Do s

80

http://dtai.cs.kuleuven.be/problog/

Maurice Bruynooghe
Bart Demoen
Anton Dries
Daan Fierens
Jason Filippou

Bernd Gutmann
Manfred Jaeger
Gerda Janssens
Kristian Kersting
Angelika Kimmig

Theofrastos Mantadelis

Wannes Meert
Bogdan Moldovan
Siegfried Nijssen

Davide Nitti

Joris Renkens

Kate Revoredo

Ricardo Rocha

Vitor Santos Costa
Dimitar Shterionov
Ingo Thon
Hannu Toivonen

Guy Van den Broeck

Mathias Verbeke
Jonas Vlasselaer

[—— “
| €) & https://dtal.cs kuleuven.be/problog/index.htm c

Thanks !

http://dtai.cs.kuleuven.be/problog

Introduction.

oroarams n o s YT e farte are anreytateory wetn 'wrl'"(_\:‘r-, T~
= RN VI R e ~ VI UK QU0 AT QN IIALS Vil W UACQUNUCO

Arrvrarncohr ey ~ (- S aro Yy'w
TAUNOUL WAL ALAA A w CU T RAAL LA

Problog is a tool that allows you to intuitively bulld programs that do not only encode complex interactions between a large sets of heterogenous components b
uncertainties that are present in real-life situations.

The engine tackles several tasks such as computing the marginals given evidence and leaming from (partial) interpretations. ProblLog IS a suite of efficient algorithm:
tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inferance tasks to well-:
weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

Probl.og makes it easy to express complex, probabillistic modeis.

0.3::stress(X) :- person(X).

8l

PRISM http://sato-www.cs.titech.ac.jp/prism/ P L P

ProbLog2 http://dtai.cs.kuleuven.be/problog/

Yap Prolog http://www.dcc.fc.up.pt/~vsc/Yap/ includes SYSte m S
® ProblLogl

® cplint https://sites.google.com/a/unife.it/ml/cplint
e CLP(BN)

e LP2

PITA in XSB Prolog http://xsb.sourceforge.net/
AlLog?2 http://artint.info/code/ailog/ailog2.html
SLPs http://stoics.org.uk/~nicos/sware/pepl
contdist http://www.cs.sunysb.edu/~cram/contdist/
DC https://code.google.com/p/distributional-clauses

WFOMC http://dtai.cs.kuleuven.be/ml/systems/wfomc
82

References

Bach SH, Broecheler M, Getoor L, O’Leary DP (2012) Scaling MPE inference for
constrained continuous Markov random fields with consensus optimization. In:
Proceedings of the 26th Annual Conference on Neural Information Processing
Systems (NIPS-12)

Broecheler M, Mihalkova L, Getoor L (2010) Probabilistic similarity logic. In: Pro-
ceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI-
10)

Bryant RE (1986) Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers 35(8):677-691

Cohen SB, Simmons RJ, Smith NA (2008) Dynamic programming algorithms as
products of weighted logic programs. In: Proceedings of the 24th International
Conference on Logic Programming (ICLP-08)

Cussens J (2001) Parameter estimation in stochastic logic programs. Machine
Learning 44(3):245-271

De Maeyer D, Renkens J, Cloots L, De Raedt L, Marchal K (2013) Phenetic:
network-based interpretation of unstructured gene lists in e. coli. Molecular
BioSystems 9(7):1594-1603

De Raedt L, Kimmig A (2013) Probabilistic programming concepts. CoRR
abs/1312.4328

De Raedt L, Kimmig A, Toivonen H (2007) ProbLog: A probabilistic Prolog and
its application in link discovery. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-07)

De Raedt L, Frasconi P, Kersting K, Muggleton S (eds) (2008) Probabilistic Induc-
tive Logic Programming — Theory and Applications, Lecture Notes in Artificial
Intelligence, vol 4911. Springer

Eisner J, Goldlust E, Smith N (2005) Compiling Comp Ling: Weighted dynamic
programming and the Dyna language. In: Proceedings of the Human Language
Technology Conference and Conference on Empirical Methods in Natural Lan-
guage Processing (HLT/EMNLP-05)

Fierens D, Blockeel H, Bruynooghe M, Ramon J (2005) Logical Bayesian networks
and their relation to other probabilistic logical models. In: Proceedings of the
15th International Conference on Inductive Logic Programming (ILP-05)

Fierens D, Van den Broeck G, Bruynooghe M, De Raedt L (2012) Constraints
for probabilistic logic programming. In: Proceedings of the NIPS Probabilistic
Programming Workshop

Fierens D, Van den Broeck G, Renkens J, Shterionov D, Gutmann B, Thon I,
Janssens G, De Raedt L (2014) Inference and learning in probabilistic logic
programs using weighted Boolean formulas. Theory and Practice of Logic Pro-
gramming (TPLP) FirstView

Getoor L, Friedman N, Koller D, Pfeffer A, Taskar B (2007) Probabilistic relational
models. In: Getoor L, Taskar B (eds) An Introduction to Statistical Relational
Learning, MIT Press, pp 129-174

Goodman N, Mansinghka VK, Roy DM, Bonawitz K, Tenenbaum JB (2008)
Church: a language for generative models. In: Proceedings of the 24th Con-
ference on Uncertainty in Artificial Intelligence (UAI-08)

Gutmann B, Thon I, De Raedt L (2011a) Learning the parameters of probabilis-
tic logic programs from interpretations. In: Proceedings of the 22nd European

Conference on Machine Learning (ECML-11)

Gutmann B, Thon I, Kimmig A, Bruynooghe M, De Raedt L (2011b) The magic
of logical inference in probabilistic programming. Theory and Practice of Logic
Programming (TPLP) 11((4-5)):663—680

Huang B, Kimmig A, Getoor L, Golbeck J (2013) A flexible framework for prob-
abilistic models of social trust. In: Proceedings of the International Conference
on Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP-13)

Jaeger M (2002) Relational Bayesian networks: A survey. Linkoping Electronic
Articles in Computer and Information Science 7(015)

Kersting K, Raedt LD (2001) Bayesian logic programs. CoRR ¢s.AI/0111058

Kimmig A, Van den Broeck G, De Raedt L. (2011a) An algebraic Prolog for rea-
soning about possible worlds. In: Proceedings of the 25th AAAI Conference on
Artificial Intelligence (AAAI-11)

Kimmig A, Demoen B, De Raedt L, Santos Costa V, Rocha R (2011b) On the im-
plementation of the probabilistic logic programming language ProbLog. Theory
and Practice of Logic Programming (TPLP) 11:235-262

Koller D, Pfeffer A (1998) Probabilistic frame-based systems. In: Proceedings of
the 15th National Conference on Artificial Intelligence (AAAI-98)

McCallum A, Schultz K, Singh S (2009) FACTORIE: Probabilistic programming
via imperatively defined factor graphs. In: Proceedings of the 23rd Annual Con-
ference on Neural Information Processing Systems (NIPS-09)

Milch B, Marthi B, Russell SJ, Sontag D, Ong DL, Kolobov A (2005) Blog: Proba-
bilistic models with unknown objects. In: Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI-05)

Moldovan B, De Raedt L (2014) Occluded object search by relational affordances.
In: IEEE International Conference on Robotics and Automation (ICRA-14)
Moldovan B, Moreno P, van Otterlo M, Santos-Victor J, De Raedt L (2012) Learn-
ing relational affordance models for robots in multi-object manipulation tasks.

In: IEEE International Conference on Robotics and Automation (ICRA-12)

Muggleton S (1996) Stochastic logic programs. In: De Raedt L (ed) Advances in
Inductive Logic Programming, IOS Press, pp 254264

Nitti D, De Laet T, De Raedt L (2013) A particle filter for hybrid relational do-
mains. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-13)

Nitti D, De Laet T, De Raedt L (2014) Relational object tracking and learning.
In: IEEE International Conference on Robotics and Automation (ICRA), June
2014

Pfeffer A (2001) IBAL: A probabilistic rational programming language. In: Pro-
ceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI-01)

Pfeffer A (2009) Figaro: An object-oriented probabilistic programming language.
Tech. rep., Charles River Analytics

Poole D (2003) First-order probabilistic inference. In: Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI-03)

Richardson M, Domingos P (2006) Markov logic networks. Machine Learning 62(1-
2):107-136

Santos Costa V, Page D, Cussens J (2008) CLP(BN): Constraint logic program-
§1'§ng for probabilistic knowledge. In: De Raedt et al (2008), pp 156-188

Sato T (1995) A statistical learning method for logic programs with distribution
semantics. In: Proceedings of the 12th International Conference on Logic Pro-
gramming (ICLP-95)

Sato T, Kameya Y (2001) Parameter learning of logic programs for symbolic-
statistical modeling. J Artif Intell Res (JAIR) 15:391-454

Sato T, Kameya Y (2008) New advances in logic-based probabilistic modeling by
prism. In: Probabilistic Inductive Logic Programming, pp 118-155

Skarlatidis A, Artikis A, Filiopou J, Paliouras G (2014) A probabilistic logic pro-
gramming event calculus. Theory and Practice of Logic Programming (TPLP)
FirstView

Suciu D, Olteanu D, Ré C, Koch C (2011) Probabilistic Databases. Synthesis
Lectures on Data Management, Morgan & Claypool Publishers

Taskar B, Abbeel P, Koller D (2002) Discriminative probabilistic models for rela-
tional data. In: Proceedings of the 18th Conference on Uncertainty in Artificial
Intelligence (UAI-02)

Thon I, Landwehr N, De Raedt L (2008) A simple model for sequences of rela-
tional state descriptions. In: Proceedings of the European Conference on Ma-
chine Learning and Knowledge Discovery in Databases (ECML/PKDD-08)

Thon I, Landwehr N, De Raedt L (2011) Stochastic relational processes: Efficient
inference and applications. Machine Learning 82(2):239-272

Van den Broeck G, Thon I, van Otterlo M, De Raedt L (2010) DTProbLog: A
decision-theoretic probabilistic Prolog. In: Proceedings of the 24th AAAI Con-
ference on Artificial Intelligence (AAAI-10)

Van den Broeck G, Taghipour N, Meert W, Davis J, De Raedt L (2011) Lifted
probabilistic inference by first-order knowledge compilation. In: Proceedings of
the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11)

Vennekens J, Verbaeten S, Bruynooghe M (2004) Logic programs with annotated
disjunctions. In: Proceedings of the 20th International Conference on Logic Pro-
gramming (ICLP-04)

Vennekens J, Denecker M, Bruynooghe M (2009) CP-logic: A language of causal
probabilistic events and its relation to logic programming. Theory and Practice
of Logic Programming (TPLP) 9(3):245-308

Wang WY, Mazaitis K, Cohen WW (2013) Programming with personalized pager-
ank: a locally groundable first-order probabilistic logic. In: Proceedings of the

22nd ACM International Conference on Information and Knowledge Manage-
ment (CIKM-13)

84

