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Limitations of RNNs: A Computational Perspective

Some Preliminaries: RNNs

● Recurrent hidden layer outputs 
distribution over next 
symbol/label/nil

● Connects "back to itself"
●

Conceptually: hidden layer 
models history of the sequence.



Limitations of RNNs: A Computational Perspective

Some Preliminaries: RNNs

● RNNs fit variable width problems 
well

● Unfold to feedforward nets with 
shared weights

● Can capture long(ish) range 
dependencies
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The Ubiquity of RNNs

RNNs: an established class of architectures for dealing with sequence data.

Turning point: Long Short Term Memory (Hochreiter and Schmidhuber, 1997; Gers and Schmidhuber, 2000)

A (relatively) simple architecture which adapts well across domains.

What do its failure modes tell us? What should research focus on?

Let's review some notable successes first...
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Language Modelling

Task: Model the joint probability of a sequence of tokens P(t1, ..., tn).

Factorise it as ∏i∈[1,n]P(ti|t1, ..., ti-1).

n-gram models rely on order-n markov assumption to do this...

RNN cells model, in their activations, P(ti|t1, ..., ti-1).

No explicit bound to the history conditioning prediction at any time step.
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Represent source sequence s and model probability of target sequence t via the 

conditional language modelling factorisation P(ti+1|t1...tn; s) with RNNs:

1. Read in source sequence to produce s.

2. Train model to maximise the likelihood of t given s.

3. Test time: Generate target sequence t (greedily, beam search, etc) from s.

Sequence to Sequence Mapping with RNNs
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Neural Machine Translation

(Sutskever et al. NIPS 2014)
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Task (Zaremba and Sutskever, 2014):
● Read simple python scripts character-by-character
● Output numerical result character-by-character.

Learning to Execute
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Large-scale Supervised Reading Comprehension

The BBC producer allegedly struck by Jeremy Clarkson will not press charges against the 
“Top Gear” host, his lawyer said Friday. Clarkson, who hosted one of the most-watched 
television shows in the world, was dropped by the BBC Wednesday after an internal 
investigation by the British broadcaster found he had subjected producer Oisin Tymon “to
an unprovoked physical and verbal attack.” … 

Cloze-style question:
Query: Producer X will not press charges against Jeremy Clarkson, his lawyer says.
Answer: Oisin Tymon

(Hermann et al. NIPS 2015)
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Failure Modes of LSTM-RNNs: Language Modelling

LSTMs make for good local language models, but bad at document-level context.

The LAMBADA dataset (Paperno et al. 2016)
1. Get some n-sentence long  paragraphs from books, news, etc. (n≅3 here)
2. Get annotators to predict the (unseen) last word. Remove paragraphs with 

annotator disagreement.
3. Train LMs, remove paragraphs where they score above a likelihood 

threshold.
4. Get annotators to predict the last (unseen) word, observing the last sentence 

only. Remove paragraphs where they succeed.
That's your test set. Good luck!
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Failure Modes of LSTM-RNNs: Sequence-to-Sequence

There's a transduction bottleneck:
● Non-adaptive capacity
● Target sequence modelling 

dominates training
● Gradient-starved encoder
● Fixed size considered harmful?



Limitations of RNNs: A Computational Perspective

Randomly generated data:
1. Sample a length l from e.g. 8 to 64.
2. Sample l integers from 1 to N to form a sequence.
3. Target: copy/reverse sequence after reading it.

LSTM seq2seq can do this quite well (it takes a while).
It will "generalise" to unseen sequences in the [8, 64] token range.
Immediate failure on sequences in range [65, ...].
More parameters does not help.

Failure Modes of LSTM-RNNs: Copy/Reverse
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Turing Machines (computable functions)
⬆⬆⬆

Pushdown Automata (context free languages)
⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy

Sieglemann & Sontag (1995)
Are RNNs here? →
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Simple RNNs (basic, GRU, LSTM) cannot* learn Turing Machines:

● RNNs do not control the "tape". Sequence exposed in forced order.

● Maximum likelihood objective (p(x|θ), p(x,y|θ), ...) produces model close to 

training data distribution.

● Can we reasonably expect regularisation to yield structured computational 

model as an out-of-sample generalisation mechanism?

RNNs and Turing Machines

*  Through "normal" sequence-based maximum likelihood training.
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Not a proof, but think of simple RNNs as approximations of FSMs:

● Effectively order-N Markov chains, but N need not be specified

● Memoryless in theory, but can simulate memory through dependencies:

    E.g. ".*a...a" → p(X="a"|"a" was seen four symbols ago)

● Very limited, bounded form of memory

● No incentive under ML objectives to learn dependencies beyond the sort and 

range observed during training

RNNs and Finite State Machines
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Some problems:

● RNN state acts as both controller and "memory"

● Longer dependencies require more "memory"

● Tracking more dependencies requires more "memory"

● More complex/structured dependencies require more "memory"

RNNs and Finite State Machines
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Natural Language is arguably at least Context Free (need at least a PDA)
Even if it's not, rule parsimony matters!

E.g. model anbn, if in practice n is never more than N.

Why more than FSM?

Regular language (N+1 rules)
ε|(ab)|(aabb)|(aaabbb)|...

CFG (2 rules)

S → a S b

S → ε
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Turing Machines (computable functions)
⬆⬆⬆

Pushdown Automata (context free languages)
⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy

We are here →

We we 
want to 
be here

→[
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RNNs: More API than Model



Limitations of RNNs: A Computational Perspective

RNNs: More API than Model
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We aim to satisfy the following constraint (with some exceptions):

RNNs: More API than Model

where the bar operator 
indicates flattened sets.
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The Controller-Memory Split
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Attention (Early Fusion)
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Attention (Late Fusion)
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Skipping the bottleneck
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Skipping the bottleneck
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Limitations of ROM + RNN

Constrained to one-to-one or one-to-many alignments.

Representations must be updated across documents with model changes.

Multi-hop attention is difficult without changing ROM.

Risk of information overload. No explicit sense of saliency.

Scalability is an issue.
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Attention as ROM
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Register Memory as RAM
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Part of the "tape" is internalised

Controller can control tape motion via various mechanisms

RNN could model state transitions

In ML-based training, number of computational steps is tied to data

Unlikely(?) to learn a general algorithm, but experiments (e.g. Graves et al. 2014) 

show better generalisation on symbolic tasks.

Relation to actual Turing Machines
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Controlling a Neural Stack

(Joulin and Mikolov, NIPS 2015)
(Grefenstette et al. NIPS 2015)



Limitations of RNNs: A Computational Perspective

Stack API
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Controller + Stack Interaction
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Rapid Convergence

Regular language (N+1 rules)
ε|(ab)|(aabb)|(aaabbb)|...

CFG (2 rules)

S → a S b

S → ε
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● Decent approximations of classical PDA

● Architectural bias towards recursive/nested dependencies

● Should be useful for syntactically rich natural language

○ Parsing

○ Compositionality

○ But little work on applying these architectures

● Limitation: memory operations operate in lock-step with input-output.

Neural PDA Summary
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Complexity needed, but it's easy to design an overly complex model. 

Better to understand limits of existing models w.r.t. a problem.

By understanding the limitations and their nature, often better solutions pop out 

by analysis. Best example: Chapters 1-3 of Felix Gers' thesis (2001).

Think not just about the model, but about the complexity of the problem you want 

to solve.

Conclusions
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