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Recurrent hidden layer outputs
distribution over next
symbol/label/nil

Connects "back to itself"

Conceptually: hidden layer
models history of the sequence.
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Outputs

RNNs fit variable width problems
well

Unfold to feedforward nets with
shared weights

Can capture long(ish) range
dependencies
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The Ubiquity of RNNs

RNNSs: an established class of architectures for dealing with sequence data.
Turning point: Long Short Term Memory (Hochreiter and Schmidhuber, 1997; Gers and Schmidhuber, 2000)

A (relatively) simple architecture which adapts well across domains.

What do its failure modes tell us? What should research focus on?

Let's review some notable successes first...
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Language Modelling

Task: Model the joint probability of a sequence of tokens P(t,, ..., t ).
Factorise it as I'Iie[m]P(tiItV )

n-gram models rely on order-n markov assumption to do this...

RNN cells model, in their activations, P(t|t., ..., t..).

No explicit bound to the history conditioning prediction at any time step.
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Sequence to Sequence Mapping with RNNs

Represent source sequence s and model probability of target sequence t via the

conditional language modelling factorisation P(t. . It....t ; s) with RNNs:

1. Read in source sequence to produce s.
2. Train model to maximise the likelihood of t given s.

3. Test time: Generate target sequence t (greedily, beam search, etc) from s.
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Source sequence

Neural Machine Translation

(Sutskever et al. NIPS 2014)

P(some english|du francgais)
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Learning to Execute

Task (Zaremba and Sutskever, 2014):

e Read simple python scripts character-by-character
e Output numerical result character-by-character.

Input:
j=8584
for x in range(8):
J+=920
b=(1500+7)
print ((b+7567))
Target: 25011.

Input:

i=8827

c=(1-5347)

print ((c+8704) if 2641<8500 else 5308)
Target: 12184.
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Large-scale Supervised Reading Comprehension

(Hermann et al. NIPS 2015)
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Failure Modes of LSTM-RNNSs: Language Modelling

LSTMs make for good local language models, but bad at document-level context.

The LAMBADA dataset (Paperno et al. 2016)

1. Get some n-sentence long paragraphs from books, news, etc. (n=3 here)

2. Get annotators to predict the (unseen) last word. Remove paragraphs with
annotator disagreement.

3. Train LMs, remove paragraphs where they score above a likelihood

threshold.
4. Get annotators to predict the last (unseen) word, observing the last sentence
only. Remove paragraphs where they succeed.

That's your test set. Good luck!
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Failure Modes of LSTM-RNNs: Sequence-to-Sequence
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There's a transduction bottleneck:

Non-adaptive capacity

Target sequence modelling
dominates training
Gradient-starved encoder
Fixed size considered harmful?
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Failure Modes of LSTM-RNNSs: Copy/Reverse

Randomly generated data:

1. Sample a length / from e.g. 8 to 64.
2. Sample | integers from 1 to N to form a sequence.
3. Target: copy/reverse sequence after reading it.

LSTM seq2seq can do this quite well (it takes a while).

It will "generalise" to unseen sequences in the [8, 64] token range.
Immediate failure on sequences in range [65, ...].

More parameters does not help.
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Computational Hierarchy

Are RNNs here? — TUring Machines (computable functions)
Sieglemann & Sontag (1995)
ti1

Pushdown Automata (context free languages)

tt1

Finite State Machines (regular languages)
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RNNs and Turing Machines

Simple RNNs (basic, GRU, LSTM) cannot” learn Turing Machines:

e RNNs do not control the "tape". Sequence exposed in forced order.

e Maximum likelihood objective (p(x|0), p(x,y|0), ...) produces model close to
training data distribution.

e (Can we reasonably expect regularisation to yield structured computational

model as an out-of-sample generalisation mechanism?
* Through "normal" sequence-based maximum likelihood training.
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RNNs and Finite State Machines

Not a proof, but think of simple RNNs as approximations of FSMs:

e Effectively order-N Markov chains, but N need not be specified
e Memoryless in theory, but can simulate memory through dependencies:

E.g. ".*a...a" — p(X="a"|"a" was seen four symbols ago)
e Very limited, bounded form of memory
e No incentive under ML objectives to learn dependencies beyond the sort and

range observed during training
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RNNs and Finite State Machines

Some problems:

e RNN state acts as both controller and "memory”
e Longer dependencies require more "memory"
e Tracking more dependencies requires more "'memory"

e More complex/structured dependencies require more "memory"
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Why more than FSM?

Natural Language is arguably at least Context Free (need at least a PDA)
Even if it's not, rule parsimony matters!

E.g. model a"b", if in practice n is never more than N.

Regular language (N+1 rules) CFG (2 rules)
e|(ab)|(aabb)|(aaabbb)]... c .oh
S—e¢e
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Computational Hierarchy

Turing Machines (computable functions)

We we
want to — 111
be here Pushdown Automata (context free languages)

Tttt

We are here —  Finite State Machines (regular languages)
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RNNs: More API than Model

4 2N
previous next
state | | state
Recurrent
_ Cell
Inputs —» outputs
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RNNs: More API than Model
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RNNs: More API than Model

We aim to satisfy the following constraint (with some exceptions):

Oy Oy Ony Ony

Ve: € X,pp e Pys €Y, np €N e are defined.
Iy Opt 0Tt Opt

where the bar operator | p - |

, , gradient gradient
indicates flattened sets. w.rt w.rt.
previous next

state < state

gradient gradient

wrt. < w.r.t.

inputs outputs
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The Controller-Memory Split
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Attention (Early Fusion)
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Attention (Late Fusion)
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Skipping the bottleneck
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Limitations of ROM + RNN

Constrained to one-to-one or one-to-many alignments.

Representations must be updated across documents with model changes.
Multi-hop attention is difficult without changing ROM.

Risk of information overload. No explicit sense of saliency.

Scalability is an issue.
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Attention as ROM
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Register Memory as RAM
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Relation to actual Turing Machines

Part of the "tape" is internalised

Controller can control tape motion via various mechanisms

RNN could model state transitions

In ML-based training, number of computational steps is tied to data

Unlikely(?) to learn a general algorithm, but experiments (e.g. Graves et al. 2014)

show better generalisation on symbolic tasks.
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Controlling a Neural Stack

A

write

(Joulin and Mikolov, NIPS 2015) % Neural

(Grefenstette et al. NIPS 2015)
read Stack

/ \ N
input —/ output
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Stack API

prev. values (v, .) © next values ()

previous state next state
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Controller + Stack Interaction
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Rapid Convergence
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Neural PDA Summary

e Decent approximations of classical PDA
e Architectural bias towards recursive/nested dependencies

e Should be useful for syntactically rich natural language

o Parsing
o Compositionality
o But little work on applying these architectures

e Limitation: memory operations operate in lock-step with input-output.
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Conclusions

Complexity needed, but it's easy to design an overly complex model.

Better to understand limits of existing models w.r.t. a problem.

By understanding the limitations and their nature, often better solutions pop out

by analysis. Best example: Chapters 1-3 of Felix Gers' thesis (2001).

Think not just about the model, but about the complexity of the problem you want

to solve.
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