
Recurrent Neural Networks and
Models of Computations

Edward Grefenstette
etg@google.com

mailto:etg@google.com

Limitations of RNNs: A Computational Perspective

Some Preliminaries: RNNs

● Recurrent hidden layer outputs
distribution over next
symbol/label/nil

● Connects "back to itself"
●

Conceptually: hidden layer
models history of the sequence.

Limitations of RNNs: A Computational Perspective

Some Preliminaries: RNNs

● RNNs fit variable width problems
well

● Unfold to feedforward nets with
shared weights

● Can capture long(ish) range
dependencies

Limitations of RNNs: A Computational Perspective

The Ubiquity of RNNs

RNNs: an established class of architectures for dealing with sequence data.

Turning point: Long Short Term Memory (Hochreiter and Schmidhuber, 1997; Gers and Schmidhuber, 2000)

A (relatively) simple architecture which adapts well across domains.

What do its failure modes tell us? What should research focus on?

Let's review some notable successes first...

Limitations of RNNs: A Computational Perspective

Language Modelling

Task: Model the joint probability of a sequence of tokens P(t1, ..., tn).

Factorise it as ∏i∈[1,n]P(ti|t1, ..., ti-1).

n-gram models rely on order-n markov assumption to do this...

RNN cells model, in their activations, P(ti|t1, ..., ti-1).

No explicit bound to the history conditioning prediction at any time step.

Limitations of RNNs: A Computational Perspective

Represent source sequence s and model probability of target sequence t via the

conditional language modelling factorisation P(ti+1|t1...tn; s) with RNNs:

1. Read in source sequence to produce s.

2. Train model to maximise the likelihood of t given s.

3. Test time: Generate target sequence t (greedily, beam search, etc) from s.

Sequence to Sequence Mapping with RNNs

Limitations of RNNs: A Computational Perspective

Neural Machine Translation

(Sutskever et al. NIPS 2014)

Limitations of RNNs: A Computational Perspective

Task (Zaremba and Sutskever, 2014):
● Read simple python scripts character-by-character
● Output numerical result character-by-character.

Learning to Execute

Limitations of RNNs: A Computational Perspective

Large-scale Supervised Reading Comprehension

The BBC producer allegedly struck by Jeremy Clarkson will not press charges against the
“Top Gear” host, his lawyer said Friday. Clarkson, who hosted one of the most-watched
television shows in the world, was dropped by the BBC Wednesday after an internal
investigation by the British broadcaster found he had subjected producer Oisin Tymon “to
an unprovoked physical and verbal attack.” …

Cloze-style question:
Query: Producer X will not press charges against Jeremy Clarkson, his lawyer says.
Answer: Oisin Tymon

(Hermann et al. NIPS 2015)

Limitations of RNNs: A Computational Perspective

Failure Modes of LSTM-RNNs: Language Modelling

LSTMs make for good local language models, but bad at document-level context.

The LAMBADA dataset (Paperno et al. 2016)
1. Get some n-sentence long paragraphs from books, news, etc. (n≅3 here)
2. Get annotators to predict the (unseen) last word. Remove paragraphs with

annotator disagreement.
3. Train LMs, remove paragraphs where they score above a likelihood

threshold.
4. Get annotators to predict the last (unseen) word, observing the last sentence

only. Remove paragraphs where they succeed.
That's your test set. Good luck!

Limitations of RNNs: A Computational Perspective

Failure Modes of LSTM-RNNs: Sequence-to-Sequence

There's a transduction bottleneck:
● Non-adaptive capacity
● Target sequence modelling

dominates training
● Gradient-starved encoder
● Fixed size considered harmful?

Limitations of RNNs: A Computational Perspective

Randomly generated data:
1. Sample a length l from e.g. 8 to 64.
2. Sample l integers from 1 to N to form a sequence.
3. Target: copy/reverse sequence after reading it.

LSTM seq2seq can do this quite well (it takes a while).
It will "generalise" to unseen sequences in the [8, 64] token range.
Immediate failure on sequences in range [65, ...].
More parameters does not help.

Failure Modes of LSTM-RNNs: Copy/Reverse

Limitations of RNNs: A Computational Perspective

Turing Machines (computable functions)
⬆⬆⬆

Pushdown Automata (context free languages)
⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy

Sieglemann & Sontag (1995)
Are RNNs here? →

Limitations of RNNs: A Computational Perspective

Simple RNNs (basic, GRU, LSTM) cannot* learn Turing Machines:

● RNNs do not control the "tape". Sequence exposed in forced order.

● Maximum likelihood objective (p(x|θ), p(x,y|θ), ...) produces model close to

training data distribution.

● Can we reasonably expect regularisation to yield structured computational

model as an out-of-sample generalisation mechanism?

RNNs and Turing Machines

* Through "normal" sequence-based maximum likelihood training.

Limitations of RNNs: A Computational Perspective

Not a proof, but think of simple RNNs as approximations of FSMs:

● Effectively order-N Markov chains, but N need not be specified

● Memoryless in theory, but can simulate memory through dependencies:

 E.g. ".*a...a" → p(X="a"|"a" was seen four symbols ago)

● Very limited, bounded form of memory

● No incentive under ML objectives to learn dependencies beyond the sort and

range observed during training

RNNs and Finite State Machines

Limitations of RNNs: A Computational Perspective

Some problems:

● RNN state acts as both controller and "memory"

● Longer dependencies require more "memory"

● Tracking more dependencies requires more "memory"

● More complex/structured dependencies require more "memory"

RNNs and Finite State Machines

Limitations of RNNs: A Computational Perspective

Natural Language is arguably at least Context Free (need at least a PDA)
Even if it's not, rule parsimony matters!

E.g. model anbn, if in practice n is never more than N.

Why more than FSM?

Regular language (N+1 rules)
ε|(ab)|(aabb)|(aaabbb)|...

CFG (2 rules)

S → a S b

S → ε

Limitations of RNNs: A Computational Perspective

Turing Machines (computable functions)
⬆⬆⬆

Pushdown Automata (context free languages)
⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy

We are here →

We we
want to
be here

→[

Limitations of RNNs: A Computational Perspective

RNNs: More API than Model

Limitations of RNNs: A Computational Perspective

RNNs: More API than Model

Limitations of RNNs: A Computational Perspective

We aim to satisfy the following constraint (with some exceptions):

RNNs: More API than Model

where the bar operator
indicates flattened sets.

Limitations of RNNs: A Computational Perspective

The Controller-Memory Split

Limitations of RNNs: A Computational Perspective

Attention (Early Fusion)

Limitations of RNNs: A Computational Perspective

Attention (Late Fusion)

Limitations of RNNs: A Computational Perspective

Skipping the bottleneck

Limitations of RNNs: A Computational Perspective

Skipping the bottleneck

Limitations of RNNs: A Computational Perspective

Limitations of ROM + RNN

Constrained to one-to-one or one-to-many alignments.

Representations must be updated across documents with model changes.

Multi-hop attention is difficult without changing ROM.

Risk of information overload. No explicit sense of saliency.

Scalability is an issue.

Limitations of RNNs: A Computational Perspective

Attention as ROM

Limitations of RNNs: A Computational Perspective

Register Memory as RAM

Limitations of RNNs: A Computational Perspective

Part of the "tape" is internalised

Controller can control tape motion via various mechanisms

RNN could model state transitions

In ML-based training, number of computational steps is tied to data

Unlikely(?) to learn a general algorithm, but experiments (e.g. Graves et al. 2014)

show better generalisation on symbolic tasks.

Relation to actual Turing Machines

Limitations of RNNs: A Computational Perspective

Controlling a Neural Stack

(Joulin and Mikolov, NIPS 2015)
(Grefenstette et al. NIPS 2015)

Limitations of RNNs: A Computational Perspective

Stack API

Limitations of RNNs: A Computational Perspective

Controller + Stack Interaction

Limitations of RNNs: A Computational Perspective

Rapid Convergence

Regular language (N+1 rules)
ε|(ab)|(aabb)|(aaabbb)|...

CFG (2 rules)

S → a S b

S → ε

Limitations of RNNs: A Computational Perspective

● Decent approximations of classical PDA

● Architectural bias towards recursive/nested dependencies

● Should be useful for syntactically rich natural language

○ Parsing

○ Compositionality

○ But little work on applying these architectures

● Limitation: memory operations operate in lock-step with input-output.

Neural PDA Summary

Limitations of RNNs: A Computational Perspective

Complexity needed, but it's easy to design an overly complex model.

Better to understand limits of existing models w.r.t. a problem.

By understanding the limitations and their nature, often better solutions pop out

by analysis. Best example: Chapters 1-3 of Felix Gers' thesis (2001).

Think not just about the model, but about the complexity of the problem you want

to solve.

Conclusions

THANK YOU
Credits

Additional Credits

DeepMind Team

Montreal Deep Learning Summer School 2016 attendees for their insightful comments.

https://deepmind.com/careers/

https://deepmind.com/careers/

