Recurrent Neural Networks and
Models of Computations

Edward Grefenstette

G DeepMind

mailto:etg@google.com

h. —»

Some Preliminaries: RNNs

W.

@ DeepMind

ojeJe]e)

P(w,

J

—=h.

+1

j+1

Recurrent hidden layer outputs
distribution over next
symbol/label/nil

Connects "back to itself"

Conceptually: hidden layer
models history of the sequence.

Limitations of RNNs: A Computational Perspective

Some Preliminaries: RNNs

Outputs

RNNs fit variable width problems
well

Unfold to feedforward nets with
shared weights

Can capture long(ish) range
dependencies

Limitations of RNNs: A Computational Perspective

The Ubiquity of RNNs

RNNSs: an established class of architectures for dealing with sequence data.
Turning point: Long Short Term Memory (Hochreiter and Schmidhuber, 1997; Gers and Schmidhuber, 2000)

A (relatively) simple architecture which adapts well across domains.

What do its failure modes tell us? What should research focus on?

Let's review some notable successes first...

@ DeepMind Limitations of RNNs: A Computational Perspective

Language Modelling

Task: Model the joint probability of a sequence of tokens P(t,, ..., t).
Factorise it as I'Iie[m]P(tiItV)

n-gram models rely on order-n markov assumption to do this...

RNN cells model, in their activations, P(t|t., ..., t..).

No explicit bound to the history conditioning prediction at any time step.

@ DeepMind Limitations of RNNs: A Computational Perspective

Sequence to Sequence Mapping with RNNs

Represent source sequence s and model probability of target sequence t via the

conditional language modelling factorisation P(t. . It....t ; s) with RNNs:

1. Read in source sequence to produce s.
2. Train model to maximise the likelihood of t given s.

3. Test time: Generate target sequence t (greedily, beam search, etc) from s.

@ DeepMind Limitations of RNNs: A Computational Perspective

dAOOQAOO@f
AOOOYAOO@?
-AAOOOYAOO@

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Target sequence

Dogs love bones

|||||||

@O@AOO@Z
@O@AOOOJ
@O@AOO@J
@O@AOO@l
@O@AOOOI

Source sequence

Neural Machine Translation

(Sutskever et al. NIPS 2014)

P(some english|du francgais)

b DeepMind

Learning to Execute

Task (Zaremba and Sutskever, 2014):

e Read simple python scripts character-by-character
e Output numerical result character-by-character.

Input:
j=8584
for x in range(8):
J+=920
b=(1500+7)
print ((b+7567))
Target: 25011.

Input:

i=8827

c=(1-5347)

print ((c+8704) if 2641<8500 else 5308)
Target: 12184.

@ DeepMind Limitations of RNNs: A Computational Perspective

Large-scale Supervised Reading Comprehension

(Hermann et al. NIPS 2015)

@ DeepMind Limitations of RNNs: A Computational Perspective

Failure Modes of LSTM-RNNSs: Language Modelling

LSTMs make for good local language models, but bad at document-level context.

The LAMBADA dataset (Paperno et al. 2016)

1. Get some n-sentence long paragraphs from books, news, etc. (n=3 here)

2. Get annotators to predict the (unseen) last word. Remove paragraphs with
annotator disagreement.

3. Train LMs, remove paragraphs where they score above a likelihood

threshold.
4. Get annotators to predict the last (unseen) word, observing the last sentence
only. Remove paragraphs where they succeed.

That's your test set. Good luck!

@ DeepMind Limitations of RNNs: A Computational Perspective

Failure Modes of LSTM-RNNs: Sequence-to-Sequence

0O
O
®
6
O
®

(e]e]e) @]e]e)
ae ©10]0)2@l0]®)

0O
O
®
O
O
®

—>

Les chiens aiment |les

b DeepMind

:+-Q00~Q00O

Dogs love bon

=)

O

QOO+ QOO+
(0]0]0),40]0]0)2g

O
O
0
O
0

(1]
&
\'

S

—>
—>

ogs love bones

There's a transduction bottleneck:

Non-adaptive capacity

Target sequence modelling
dominates training
Gradient-starved encoder
Fixed size considered harmful?

Limitations of RNNs: A Computational Perspective

Failure Modes of LSTM-RNNSs: Copy/Reverse

Randomly generated data:

1. Sample a length / from e.g. 8 to 64.
2. Sample | integers from 1 to N to form a sequence.
3. Target: copy/reverse sequence after reading it.

LSTM seq2seq can do this quite well (it takes a while).

It will "generalise" to unseen sequences in the [8, 64] token range.
Immediate failure on sequences in range [65, ...].

More parameters does not help.

@ DeepMind Limitations of RNNs: A Computational Perspective

Computational Hierarchy

Are RNNs here? — TUring Machines (computable functions)
Sieglemann & Sontag (1995)
ti1

Pushdown Automata (context free languages)

tt1

Finite State Machines (regular languages)

@ DeepMind Limitations of RNNs: A Computational Perspective

RNNs and Turing Machines

Simple RNNs (basic, GRU, LSTM) cannot” learn Turing Machines:

e RNNs do not control the "tape". Sequence exposed in forced order.

e Maximum likelihood objective (p(x|0), p(x,y|0), ...) produces model close to
training data distribution.

e (Can we reasonably expect regularisation to yield structured computational

model as an out-of-sample generalisation mechanism?
* Through "normal" sequence-based maximum likelihood training.

@ DeepMind Limitations of RNNs: A Computational Perspective

RNNs and Finite State Machines

Not a proof, but think of simple RNNs as approximations of FSMs:

e Effectively order-N Markov chains, but N need not be specified
e Memoryless in theory, but can simulate memory through dependencies:

E.g. ".*a...a" — p(X="a"|"a" was seen four symbols ago)
e Very limited, bounded form of memory
e No incentive under ML objectives to learn dependencies beyond the sort and

range observed during training

@ DeepMind Limitations of RNNs: A Computational Perspective

RNNs and Finite State Machines

Some problems:

e RNN state acts as both controller and "memory”
e Longer dependencies require more "memory"
e Tracking more dependencies requires more "'memory"

e More complex/structured dependencies require more "memory"

@ DeepMind Limitations of RNNs: A Computational Perspective

Why more than FSM?

Natural Language is arguably at least Context Free (need at least a PDA)
Even if it's not, rule parsimony matters!

E.g. model a"b", if in practice n is never more than N.

Regular language (N+1 rules) CFG (2 rules)
e|(ab)|(aabb)|(aaabbb)]... c .oh
S—e¢e

@ DeepMind Limitations of RNNs: A Computational Perspective

Computational Hierarchy

Turing Machines (computable functions)

We we
want to — 111
be here Pushdown Automata (context free languages)

Tttt

We are here — Finite State Machines (regular languages)

@ DeepMind Limitations of RNNs: A Computational Perspective

RNNs: More API than Model

4 2N
previous next
state | | state
Recurrent
_ Cell
Inputs —» outputs

b DeepMind Limitations of RNNs: A Computational Perspective

RNNs: More API than Model

previous next
state state
INnputs — —® outputs

b DeepMind

RNNs: More API than Model

We aim to satisfy the following constraint (with some exceptions):

Oy Oy Ony Ony

Ve: € X,pp e Pys €Y, np €N e are defined.
Iy Opt 0Tt Opt

where the bar operator | p - |

, , gradient gradient
indicates flattened sets. w.rt w.rt.
previous next

state < state

gradient gradient

wrt. < w.r.t.

inputs outputs

@ DeepMind Limitations of RNNs: A Computational Perspective

The Controller-Memory Split

4)
4 I
_ Memory
previous ?ﬁ- next
state - ¢ 7 N > state
)
o e g /_’ G
-
- J

b DeepMind

Attention (Early Fusion)

0000
000

f \
r &
e
q...
@)
previous 9 © % next

. Memory)

state — - > state
o
@) j

INpLlits = — outputs

QOO

b DeepMind

Attention (Late Fusion)

.
r \
9@ [
9/(9)...[0
oo
previous 99 © ?j_ next

. Memory

state - > state
SR
\ ~

inputs —\ — outputs

(eJeJe

b DeepMind

éCOOOf
T@O@AOO@%

Target sequence

TmOO@AOO@f

©mu©+©mu©£
@O@AOO@L
@O@AOO@J
@O@AOO@A
@O@AOO@L

Skipping the bottleneck

b DeepMind

Skipping the bottleneck

TmOOOuAOOOuf
TAOO@AOO@?
i+ O@H@ 0.@.%
be AOO@AOO@T
mOvauAOmuOuf“
@O@AOO@f%
@Aoo@ﬁ
@O@AOO@A

@) O OO O O+

b DeepMind

Limitations of ROM + RNN

Constrained to one-to-one or one-to-many alignments.

Representations must be updated across documents with model changes.
Multi-hop attention is difficult without changing ROM.

Risk of information overload. No explicit sense of saliency.

Scalability is an issue.

@ DeepMind Limitations of RNNs: A Computational Perspective

Attention as ROM

f

\
r &
e
q...
@)
previous 9 © ?j_ next

. Memory)

state ’ state
o
Oj

0000
000

INpLlits = — outputs

QOO

b DeepMind

Register Memory as RAM
4 N\
4 a
90 [©
oll9]...[0
previous (q SO ?ﬂ- next
state e D s N
m
O
INPLILS === 8 — outputs
©
o v

b DeepMind

Relation to actual Turing Machines

Part of the "tape" is internalised

Controller can control tape motion via various mechanisms

RNN could model state transitions

In ML-based training, number of computational steps is tied to data

Unlikely(?) to learn a general algorithm, but experiments (e.g. Graves et al. 2014)

show better generalisation on symbolic tasks.

@ DeepMind Limitations of RNNs: A Computational Perspective

Controlling a Neural Stack

A

write

(Joulin and Mikolov, NIPS 2015) % Neural

(Grefenstette et al. NIPS 2015)
read Stack

/ \ N
input —/ output

b DeepMind Limitations of RNNs: A Computational Perspective

2 Z2 0

Stack API

prev. values (v, .) © next values ()

previous state next state

prev. strengths (s;_,) N eura I next strengths (s)

e | Stack

pop (u) output (r)
g

°
| value {vr! r

input

—

b DeepMind

Controller + Stack Interaction

N\
|{ (Vy_q: S¢.7) T\ |
| f \ |
prewousl h,_ ‘g g I
state | (') h, l I naxt
H - (:)_,
t-1 I R (V} sy) @_I_s;ﬂte
K, H
1|~ . «7 | Neural '_151. 0
| d
) N . [Stack .
put I (Or,] u rt
' ip *¢-1) I
O | output

Rapid Convergence

@ DeepMind

20000

40000

age

60000

1-layer LSTM
2-layer LSTM
4-layer LSTM
8-layer LSTM
DeQue
Queue

Stack

80000 100000

Regular language (N+1 rules)
e|(ab)|(aabb)|(aaabbb)]...

CFG (2 rules)
S—aShb

S—>¢

Limitations of RNNs: A Computational Perspective

Neural PDA Summary

e Decent approximations of classical PDA
e Architectural bias towards recursive/nested dependencies

e Should be useful for syntactically rich natural language

o Parsing
o Compositionality
o But little work on applying these architectures

e Limitation: memory operations operate in lock-step with input-output.

@ DeepMind Limitations of RNNs: A Computational Perspective

Conclusions

Complexity needed, but it's easy to design an overly complex model.

Better to understand limits of existing models w.r.t. a problem.

By understanding the limitations and their nature, often better solutions pop out

by analysis. Best example: Chapters 1-3 of Felix Gers' thesis (2001).

Think not just about the model, but about the complexity of the problem you want

to solve.

@ DeepMind Limitations of RNNs: A Computational Perspective

THANK YOU

Credits
DeepMind Team

Additional Credits

Montreal Deep Learning Summer School 2016 attendees for their insightful comments.

https://deepmind.com/careers/

