
Learning Logically Defined Hypotheses

Martin Grohe
RWTH Aachen

Outline

I. A Declarative Model-Theoretic Framework for ML

II. First-Order Hypotheses on Low-Degree Structures

(joint work with Martin Ritzert)

III. Monadic Second-Order Hypotheses on Strings

(joint work with Christof Löding and Martin Ritzert)

IV. Concluding Remarks

2

A Declarative Model-Theoretic
Framework for ML

3

Declarative ML

Observations about today’s ML practice

I Algorithmic focus: goal is to approximate an unknown

function as well as possible (rather than understanding the

function)

I It is difficult for a non-expert user to decide which algorithm

(with which “hyper-parameter” settings, network topology,

...) to use

I Models are determined by the algorithm and often have little

meaning beyond that.

I It is difficult to understand and explain what the models do.

Declarative approach

Try to separate model from solver as far as possible.

4

Declarative ML

Observations about today’s ML practice

I Algorithmic focus: goal is to approximate an unknown

function as well as possible (rather than understanding the

function)

I It is difficult for a non-expert user to decide which algorithm

(with which “hyper-parameter” settings, network topology,

...) to use

I Models are determined by the algorithm and often have little

meaning beyond that.

I It is difficult to understand and explain what the models do.

Declarative approach

Try to separate model from solver as far as possible.

4

Declarative ML

Observations about today’s ML practice

I Algorithmic focus: goal is to approximate an unknown

function as well as possible (rather than understanding the

function)

I It is difficult for a non-expert user to decide which algorithm

(with which “hyper-parameter” settings, network topology,

...) to use

I Models are determined by the algorithm and often have little

meaning beyond that.

I It is difficult to understand and explain what the models do.

Declarative approach

Try to separate model from solver as far as possible.

4

Declarative ML

Observations about today’s ML practice

I Algorithmic focus: goal is to approximate an unknown

function as well as possible (rather than understanding the

function)

I It is difficult for a non-expert user to decide which algorithm

(with which “hyper-parameter” settings, network topology,

...) to use

I Models are determined by the algorithm and often have little

meaning beyond that.

I It is difficult to understand and explain what the models do.

Declarative approach

Try to separate model from solver as far as possible.

4

Declarative ML

Observations about today’s ML practice

I Algorithmic focus: goal is to approximate an unknown

function as well as possible (rather than understanding the

function)

I It is difficult for a non-expert user to decide which algorithm

(with which “hyper-parameter” settings, network topology,

...) to use

I Models are determined by the algorithm and often have little

meaning beyond that.

I It is difficult to understand and explain what the models do.

Declarative approach

Try to separate model from solver as far as possible.

4

Declarative ML

Observations about today’s ML practice

I Algorithmic focus: goal is to approximate an unknown

function as well as possible (rather than understanding the

function)

I It is difficult for a non-expert user to decide which algorithm

(with which “hyper-parameter” settings, network topology,

...) to use

I Models are determined by the algorithm and often have little

meaning beyond that.

I It is difficult to understand and explain what the models do.

Declarative approach

Try to separate model from solver as far as possible.

4

Idea of Model-Theoretic Framework

Background structure

Background knowledge represented by logical structure,

which,

for example, may capture

I arithmetical knowledge (e.g. field of real numbers, some

Hilbert space)

I structural knowledge (e.g. webgraph, relational data)

Parametric model
Model described by formula of a suitable logic, which usually has

certain free variables for parameters.

5

Idea of Model-Theoretic Framework

Background structure

Background knowledge represented by logical structure, which,

for example, may capture

I arithmetical knowledge (e.g. field of real numbers, some

Hilbert space)

I structural knowledge (e.g. webgraph, relational data)

Parametric model
Model described by formula of a suitable logic, which usually has

certain free variables for parameters.

5

Idea of Model-Theoretic Framework

Background structure

Background knowledge represented by logical structure, which,

for example, may capture

I arithmetical knowledge (e.g. field of real numbers, some

Hilbert space)

I structural knowledge (e.g. webgraph, relational data)

Parametric model
Model described by formula of a suitable logic, which usually has

certain free variables for parameters.

5

Idea of Model-Theoretic Framework

Background structure

Background knowledge represented by logical structure, which,

for example, may capture

I arithmetical knowledge (e.g. field of real numbers, some

Hilbert space)

I structural knowledge (e.g. webgraph, relational data)

Parametric model
Model described by formula of a suitable logic, which usually has

certain free variables for parameters.

5

Example 1

Goal
Try to predict chances on academic job market based on

publication data.

We view this as a Boolean classification problem: instances are

applicants, and the question is whether they get a job or not.

Data
A list of applicants, or rather certain pieces of information about

the applicants, labelled by the information of whether they

succeeded or not.

6

Example 1

Goal
Try to predict chances on academic job market based on

publication data.

We view this as a Boolean classification problem: instances are

applicants, and the question is whether they get a job or not.

Data
A list of applicants, or rather certain pieces of information about

the applicants, labelled by the information of whether they

succeeded or not.

6

Example 1

Goal
Try to predict chances on academic job market based on

publication data.

We view this as a Boolean classification problem: instances are

applicants, and the question is whether they get a job or not.

Data
A list of applicants, or rather certain pieces of information about

the applicants, labelled by the information of whether they

succeeded or not.

6

Example 1 (cont’d)

Scenario 1
Suppose for each person we only have the following information:

p = number of publications, t = years since PhD.

Data

t

p

Model

Linear model with two

parameters a, b:

p ≥ at + b.

Representation in our framework

I Background structures: ordered field of the reals

I Model: ϕ(x1, x2 ; y1, y2) := (x1 ≥ y1 · x2 + y2)

7

Example 1 (cont’d)

Scenario 1
Suppose for each person we only have the following information:

p = number of publications, t = years since PhD.

Data

t

p

Model

Linear model with two

parameters a, b:

p ≥ at + b.

Representation in our framework

I Background structures: ordered field of the reals

I Model: ϕ(x1, x2 ; y1, y2) := (x1 ≥ y1 · x2 + y2)

7

Example 1 (cont’d)

Scenario 1
Suppose for each person we only have the following information:

p = number of publications, t = years since PhD.

Data

t

p

Model

Linear model with two

parameters a, b:

p ≥ at + b.

Representation in our framework

I Background structures: ordered field of the reals

I Model: ϕ(x1, x2 ; y1, y2) := (x1 ≥ y1 · x2 + y2)

7

Example 1 (cont’d)

Scenario 1
Suppose for each person we only have the following information:

p = number of publications, t = years since PhD.

Data

t

p

Model

Linear model with two

parameters a, b:

p ≥ at + b.

Representation in our framework

I Background structures: ordered field of the reals

I Model: ϕ(x1, x2 ; y1, y2) := (x1 ≥ y1 · x2 + y2)
7

Example 1 (cont’d)

Scenario 2
We have a publication database of a schema that includes

relations

I AUTHOR(auth-id, name, affill)

I PUB(pub-id, auth-id, title, journal, year, . . .)

The database is our background structure.

Our model may say something like the following

(with parameters a, b, c1, . . . , cm, d1, . . . , dn):

I the candidate has at least a publications on average per year

I and at least b single-author publications

I and either a joint publication with an author from one of the

universities c1, . . . , cm

I or a publication in one of the journals d1, . . . , dn.

This can be expressed by a SQL query ϕ(x ; y1, . . . , ym+n+2).

8

Example 1 (cont’d)

Scenario 2
We have a publication database of a schema that includes

relations

I AUTHOR(auth-id, name, affill)

I PUB(pub-id, auth-id, title, journal, year, . . .)

The database is our background structure.

Our model may say something like the following

(with parameters a, b, c1, . . . , cm, d1, . . . , dn):

I the candidate has at least a publications on average per year

I and at least b single-author publications

I and either a joint publication with an author from one of the

universities c1, . . . , cm

I or a publication in one of the journals d1, . . . , dn.

This can be expressed by a SQL query ϕ(x ; y1, . . . , ym+n+2).

8

Example 1 (cont’d)

Scenario 2
We have a publication database of a schema that includes

relations

I AUTHOR(auth-id, name, affill)

I PUB(pub-id, auth-id, title, journal, year, . . .)

The database is our background structure.

Our model may say something like the following

(with parameters a, b, c1, . . . , cm, d1, . . . , dn):

I the candidate has at least a publications on average per year

I and at least b single-author publications

I and either a joint publication with an author from one of the

universities c1, . . . , cm

I or a publication in one of the journals d1, . . . , dn.

This can be expressed by a SQL query ϕ(x ; y1, . . . , ym+n+2).

8

Example 1 (cont’d)

Scenario 2
We have a publication database of a schema that includes

relations

I AUTHOR(auth-id, name, affill)

I PUB(pub-id, auth-id, title, journal, year, . . .)

The database is our background structure.

Our model may say something like the following

(with parameters a, b, c1, . . . , cm, d1, . . . , dn):

I the candidate has at least a publications on average per year

I and at least b single-author publications

I and either a joint publication with an author from one of the

universities c1, . . . , cm

I or a publication in one of the journals d1, . . . , dn.

This can be expressed by a SQL query ϕ(x ; y1, . . . , ym+n+2).

8

Example 2

Goal
Learn a formula of monadic second-order logic (or a regular

expression) that selects certain positions in a string.

Data
Fragment of the string with

certain positions marked.

Model
Select all positions with

letter ’B’ in LaTeX math

mode.

9

Example 2

Goal
Learn a formula of monadic second-order logic (or a regular

expression) that selects certain positions in a string.

Data
Fragment of the string with

certain positions marked.

Model
Select all positions with

letter ’B’ in LaTeX math

mode.

9

Example 2

Goal
Learn a formula of monadic second-order logic (or a regular

expression) that selects certain positions in a string.

Data
Fragment of the string with

certain positions marked.

Model
Select all positions with

letter ’B’ in LaTeX math

mode.

9

Example 2

Goal
Learn a formula of monadic second-order logic (or a regular

expression) that selects certain positions in a string.

Data
Fragment of the string with

certain positions marked.

Model
Select all positions with

letter ’B’ in LaTeX math

mode.

9

Formal Framework
For simplicity, we only consider Boolean classification problems.

Background structure

Finite or infinite structure B with universe U(B).

Instance space is U(B)k for some k . We call k the dimension of

the problem.

Parametric model
Formula ϕ(x̄ ; ȳ) of some logic L.

x̄ = (x1, . . . , xk) instance variables.

ȳ = (y1, . . . , y`) (for some `) parameter variables.

Hypotheses

For each parameter tuple v̄ ∈ U(B)` a Boolean function

Jϕ(x̄ ; v̄)KB : U(B)k → {0, 1} defined by

Jϕ(x̄ ; v̄)KB(ū) :=

{
1 if B |= ϕ(ū ; v̄),

0 otherwise.

10

Formal Framework
For simplicity, we only consider Boolean classification problems.

Background structure

Finite or infinite structure B with universe U(B).

Instance space is U(B)k for some k . We call k the dimension of

the problem.

Parametric model
Formula ϕ(x̄ ; ȳ) of some logic L.

x̄ = (x1, . . . , xk) instance variables.

ȳ = (y1, . . . , y`) (for some `) parameter variables.

Hypotheses

For each parameter tuple v̄ ∈ U(B)` a Boolean function

Jϕ(x̄ ; v̄)KB : U(B)k → {0, 1} defined by

Jϕ(x̄ ; v̄)KB(ū) :=

{
1 if B |= ϕ(ū ; v̄),

0 otherwise.

10

Formal Framework
For simplicity, we only consider Boolean classification problems.

Background structure

Finite or infinite structure B with universe U(B).

Instance space is U(B)k for some k . We call k the dimension of

the problem.

Parametric model
Formula ϕ(x̄ ; ȳ) of some logic L.

x̄ = (x1, . . . , xk) instance variables.

ȳ = (y1, . . . , y`) (for some `) parameter variables.

Hypotheses

For each parameter tuple v̄ ∈ U(B)` a Boolean function

Jϕ(x̄ ; v̄)KB : U(B)k → {0, 1} defined by

Jϕ(x̄ ; v̄)KB(ū) :=

{
1 if B |= ϕ(ū ; v̄),

0 otherwise.

10

Formal Framework
For simplicity, we only consider Boolean classification problems.

Background structure

Finite or infinite structure B with universe U(B).

Instance space is U(B)k for some k . We call k the dimension of

the problem.

Parametric model
Formula ϕ(x̄ ; ȳ) of some logic L.

x̄ = (x1, . . . , xk) instance variables.

ȳ = (y1, . . . , y`) (for some `) parameter variables.

Hypotheses

For each parameter tuple v̄ ∈ U(B)` a Boolean function

Jϕ(x̄ ; v̄)KB : U(B)k → {0, 1} defined by

Jϕ(x̄ ; v̄)KB(ū) :=

{
1 if B |= ϕ(ū ; v̄),

0 otherwise.

10

Formal Framework
For simplicity, we only consider Boolean classification problems.

Background structure

Finite or infinite structure B with universe U(B).

Instance space is U(B)k for some k . We call k the dimension of

the problem.

Parametric model
Formula ϕ(x̄ ; ȳ) of some logic L.

x̄ = (x1, . . . , xk) instance variables.

ȳ = (y1, . . . , y`) (for some `) parameter variables.

Hypotheses

For each parameter tuple v̄ ∈ U(B)` a Boolean function

Jϕ(x̄ ; v̄)KB : U(B)k → {0, 1} defined by

Jϕ(x̄ ; v̄)KB(ū) :=

{
1 if B |= ϕ(ū ; v̄),

0 otherwise.
10

Remarks

I Background structure may capture both abstract knowledge

and (potentially very large) data sets and relations between

them

I Usually, only a small part of of the background structure can

be inspected at runtime

I At this point it is wide open what may constitute good logics

for specifying models.

I Approach probably best suited for applications where

specifications in some kind of logic or formal language are

common, such as verification or database systems.

11

Remarks

I Background structure may capture both abstract knowledge

and (potentially very large) data sets and relations between

them

I Usually, only a small part of of the background structure can

be inspected at runtime

I At this point it is wide open what may constitute good logics

for specifying models.

I Approach probably best suited for applications where

specifications in some kind of logic or formal language are

common, such as verification or database systems.

11

Remarks

I Background structure may capture both abstract knowledge

and (potentially very large) data sets and relations between

them

I Usually, only a small part of of the background structure can

be inspected at runtime

I At this point it is wide open what may constitute good logics

for specifying models.

I Approach probably best suited for applications where

specifications in some kind of logic or formal language are

common, such as verification or database systems.

11

Remarks

I Background structure may capture both abstract knowledge

and (potentially very large) data sets and relations between

them

I Usually, only a small part of of the background structure can

be inspected at runtime

I At this point it is wide open what may constitute good logics

for specifying models.

I Approach probably best suited for applications where

specifications in some kind of logic or formal language are

common, such as verification or database systems.

11

Learning

Input

Learning algorithms have access to background structure B and

receive as input a training sequence T of labelled examples:

(ū1, λ1), . . . , (ūt , λt) ∈ U(B)k × {0, 1}.

Goal
Find hypothesis of the form Jϕ(x̄ ; v̄)KB that generalises well, that

is, predicts true target values for instances ū ∈ U(B)k well.

12

Learning

Input

Learning algorithms have access to background structure B and

receive as input a training sequence T of labelled examples:

(ū1, λ1), . . . , (ūt , λt) ∈ U(B)k × {0, 1}.

Goal
Find hypothesis of the form Jϕ(x̄ ; v̄)KB that generalises well, that

is, predicts true target values for instances ū ∈ U(B)k well.

12

Learning as Minimisation

The training error errT (H) (a.k.a. empirical risk) of a hypothesis

H on a training sequence T is the fraction of examples in T

labelled wrong by H.

Typically, a learning algorithm will try to minimise

errT (H) + ρ(H),

where H ranges over hypotheses from a hypothesis class H and a

ρ(H) is a regularisation term.

In our setting,

I H is a set of hypothesis of the form Jϕ(x̄ ; v̄)KB .

I ρ(H) only depends on ϕ (typically function of quantifier

rank).

Often we regard ϕ or at least its quantifier rank fixed. Then this

amounts to empirical risk minimisation (ERM).

13

Learning as Minimisation

The training error errT (H) (a.k.a. empirical risk) of a hypothesis

H on a training sequence T is the fraction of examples in T

labelled wrong by H.

Typically, a learning algorithm will try to minimise

errT (H) + ρ(H),

where H ranges over hypotheses from a hypothesis class H and a

ρ(H) is a regularisation term.

In our setting,

I H is a set of hypothesis of the form Jϕ(x̄ ; v̄)KB .

I ρ(H) only depends on ϕ (typically function of quantifier

rank).

Often we regard ϕ or at least its quantifier rank fixed. Then this

amounts to empirical risk minimisation (ERM).

13

Learning as Minimisation

The training error errT (H) (a.k.a. empirical risk) of a hypothesis

H on a training sequence T is the fraction of examples in T

labelled wrong by H.

Typically, a learning algorithm will try to minimise

errT (H) + ρ(H),

where H ranges over hypotheses from a hypothesis class H and a

ρ(H) is a regularisation term.

In our setting,

I H is a set of hypothesis of the form Jϕ(x̄ ; v̄)KB .

I ρ(H) only depends on ϕ (typically function of quantifier

rank).

Often we regard ϕ or at least its quantifier rank fixed. Then this

amounts to empirical risk minimisation (ERM).

13

Learning as Minimisation

The training error errT (H) (a.k.a. empirical risk) of a hypothesis

H on a training sequence T is the fraction of examples in T

labelled wrong by H.

Typically, a learning algorithm will try to minimise

errT (H) + ρ(H),

where H ranges over hypotheses from a hypothesis class H and a

ρ(H) is a regularisation term.

In our setting,

I H is a set of hypothesis of the form Jϕ(x̄ ; v̄)KB .

I ρ(H) only depends on ϕ (typically function of quantifier

rank).

Often we regard ϕ or at least its quantifier rank fixed. Then this

amounts to empirical risk minimisation (ERM).

13

Learning as Minimisation

The training error errT (H) (a.k.a. empirical risk) of a hypothesis

H on a training sequence T is the fraction of examples in T

labelled wrong by H.

Typically, a learning algorithm will try to minimise

errT (H) + ρ(H),

where H ranges over hypotheses from a hypothesis class H and a

ρ(H) is a regularisation term.

In our setting,

I H is a set of hypothesis of the form Jϕ(x̄ ; v̄)KB .

I ρ(H) only depends on ϕ (typically function of quantifier

rank).

Often we regard ϕ or at least its quantifier rank fixed. Then this

amounts to empirical risk minimisation (ERM).

13

Remarks on VC-Dimension and

PAC-Learning

I The classes of definable hypotheses we consider here tend to

have bounded VC-dimension (G. and Turán 2004; Adler and

Adler 2014).

I This implies PAC-learnability (in an information theoretic

sense).

I However, it comes without any guarantees on efficiency.

14

Remarks on VC-Dimension and

PAC-Learning

I The classes of definable hypotheses we consider here tend to

have bounded VC-dimension (G. and Turán 2004; Adler and

Adler 2014).

I This implies PAC-learnability (in an information theoretic

sense).

I However, it comes without any guarantees on efficiency.

14

Remarks on VC-Dimension and

PAC-Learning

I The classes of definable hypotheses we consider here tend to

have bounded VC-dimension (G. and Turán 2004; Adler and

Adler 2014).

I This implies PAC-learnability (in an information theoretic

sense).

I However, it comes without any guarantees on efficiency.

14

Computation Model

I We assume a standard RAM computation model with a

uniform cost measure.

I For simplicity, in this talk we always assume the background

structure to be finite.

I However, we still assume the structure to be very large, and

we want our learning algorithms to run in sublinear time in

the size of the structure.

I To be able to do meaningful computations in sublinear time,

we usually need some form of local access to the structure.

For example, we should be able to access the neighbours of a

vertex in a graph.

15

Computation Model

I We assume a standard RAM computation model with a

uniform cost measure.

I For simplicity, in this talk we always assume the background

structure to be finite.

I However, we still assume the structure to be very large, and

we want our learning algorithms to run in sublinear time in

the size of the structure.

I To be able to do meaningful computations in sublinear time,

we usually need some form of local access to the structure.

For example, we should be able to access the neighbours of a

vertex in a graph.

15

Computation Model

I We assume a standard RAM computation model with a

uniform cost measure.

I For simplicity, in this talk we always assume the background

structure to be finite.

I However, we still assume the structure to be very large, and

we want our learning algorithms to run in sublinear time in

the size of the structure.

I To be able to do meaningful computations in sublinear time,

we usually need some form of local access to the structure.

For example, we should be able to access the neighbours of a

vertex in a graph.

15

Computation Model

I We assume a standard RAM computation model with a

uniform cost measure.

I For simplicity, in this talk we always assume the background

structure to be finite.

I However, we still assume the structure to be very large, and

we want our learning algorithms to run in sublinear time in

the size of the structure.

I To be able to do meaningful computations in sublinear time,

we usually need some form of local access to the structure.

For example, we should be able to access the neighbours of a

vertex in a graph.

15

Computation Model

I We assume a standard RAM computation model with a

uniform cost measure.

I For simplicity, in this talk we always assume the background

structure to be finite.

I However, we still assume the structure to be very large, and

we want our learning algorithms to run in sublinear time in

the size of the structure.

I To be able to do meaningful computations in sublinear time,

we usually need some form of local access to the structure.

For example, we should be able to access the neighbours of a

vertex in a graph.

15

Complexity Considerations

I We strive for algorithms running in time polynomial in the

size of the training data, regardless of the size of the

background structure (or at most polylogarithmic in the size

of the background structure).

I With respect to the formula ϕ(x̄ ; ȳ), we take a data

complexity point of view (common in database theory): we

ignore contribution of the formula to the running time, or

equivalently, assume the dimension, the number of

parameters, and the quantifier rank of ϕ to be fixed.

I Then we can simply ignore the regularisation term (only

depending on ϕ) and follow the ERM paradigm:

we need to find a formula of quantifier rank at most q and a

parameter tuple that minimise the training error.

16

Complexity Considerations

I We strive for algorithms running in time polynomial in the

size of the training data, regardless of the size of the

background structure (or at most polylogarithmic in the size

of the background structure).

I With respect to the formula ϕ(x̄ ; ȳ), we take a data

complexity point of view (common in database theory): we

ignore contribution of the formula to the running time, or

equivalently, assume the dimension, the number of

parameters, and the quantifier rank of ϕ to be fixed.

I Then we can simply ignore the regularisation term (only

depending on ϕ) and follow the ERM paradigm:

we need to find a formula of quantifier rank at most q and a

parameter tuple that minimise the training error.

16

Complexity Considerations

I We strive for algorithms running in time polynomial in the

size of the training data, regardless of the size of the

background structure (or at most polylogarithmic in the size

of the background structure).

I With respect to the formula ϕ(x̄ ; ȳ), we take a data

complexity point of view (common in database theory): we

ignore contribution of the formula to the running time, or

equivalently, assume the dimension, the number of

parameters, and the quantifier rank of ϕ to be fixed.

I Then we can simply ignore the regularisation term (only

depending on ϕ) and follow the ERM paradigm:

we need to find a formula of quantifier rank at most q and a

parameter tuple that minimise the training error.

16

First-Order Hypotheses on
Low-Degree Structures

17

Theorem (G., Ritzert 2017)

There is a learner for FO running in time

(d + t)O(1)

where

I t = |T | is the length of the training sequence

I d is the maximum degree of the background structure B

I the constant hidden in the O(1) depends on q, k , `.

18

Proof

Idea
Exploit locality of FO (Gaifman’s Theorem).

Key Lemma

Parameters far away from all

training examples are irrelevant.

Algorithm

Search through all local formulas of desired quantifier rank and all

parameter settings close to training points and check which

hypothesis has the smallest training error.

19

Proof

Idea
Exploit locality of FO (Gaifman’s Theorem).

Key Lemma

Parameters far away from all

training examples are irrelevant.

Algorithm

Search through all local formulas of desired quantifier rank and all

parameter settings close to training points and check which

hypothesis has the smallest training error.

19

Proof

Idea
Exploit locality of FO (Gaifman’s Theorem).

Key Lemma

Parameters far away from all

training examples are irrelevant.

Algorithm

Search through all local formulas of desired quantifier rank and all

parameter settings close to training points and check which

hypothesis has the smallest training error.

19

Proof

Idea
Exploit locality of FO (Gaifman’s Theorem).

Key Lemma

Parameters far away from all

training examples are irrelevant.

Algorithm

Search through all local formulas of desired quantifier rank and all

parameter settings close to training points and check which

hypothesis has the smallest training error.

19

Proof

Idea
Exploit locality of FO (Gaifman’s Theorem).

Key Lemma

Parameters far away from all

training examples are irrelevant.

Algorithm

Search through all local formulas of desired quantifier rank and all

parameter settings close to training points and check which

hypothesis has the smallest training error.

19

Proof

Idea
Exploit locality of FO (Gaifman’s Theorem).

Key Lemma

Parameters far away from all

training examples are irrelevant.

Algorithm

Search through all local formulas of desired quantifier rank and all

parameter settings close to training points and check which

hypothesis has the smallest training error.

19

Proof

Idea
Exploit locality of FO (Gaifman’s Theorem).

Key Lemma

Parameters far away from all

training examples are irrelevant.

Algorithm

Search through all local formulas of desired quantifier rank and all

parameter settings close to training points and check which

hypothesis has the smallest training error.

19

Proof

Idea
Exploit locality of FO (Gaifman’s Theorem).

Key Lemma

Parameters far away from all

training examples are irrelevant.

Algorithm

Search through all local formulas of desired quantifier rank and all

parameter settings close to training points and check which

hypothesis has the smallest training error.

19

Monadic Second-Order Hypotheses
on Strings

20

Strings as Background Structures

String a1 . . . an over alphabet Σ viewed as structure with

I universe {1, . . . , n},
I binary order relation ≤ on positions,

I for each a ∈ Σ a unary relation Ra that contains all positions

i such that ai = a.

Example

Formula

ϕ(x ; y) = Ra(x) ∧ ∃z
(

z < x ∧ ∀z ′
(

z < z ′ < x → Ra(z ′)
)

∧
(
(Rb(z) ∧ z < y) ∨ (Rc(z) ∧ z ≥ y)

))
with parameter v = 35 consistent with training examples.

21

Strings as Background Structures

String a1 . . . an over alphabet Σ viewed as structure with

I universe {1, . . . , n},
I binary order relation ≤ on positions,

I for each a ∈ Σ a unary relation Ra that contains all positions

i such that ai = a.

Example

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacbcba

Formula

ϕ(x ; y) = Ra(x) ∧ ∃z
(

z < x ∧ ∀z ′
(

z < z ′ < x → Ra(z ′)
)

∧
(
(Rb(z) ∧ z < y) ∨ (Rc(z) ∧ z ≥ y)

))
with parameter v = 35 consistent with training examples.

21

Strings as Background Structures

String a1 . . . an over alphabet Σ viewed as structure with

I universe {1, . . . , n},
I binary order relation ≤ on positions,

I for each a ∈ Σ a unary relation Ra that contains all positions

i such that ai = a.

Example

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacbcba

Formula

ϕ(x ; y) = Ra(x) ∧ ∃z
(

z < x ∧ ∀z ′
(

z < z ′ < x → Ra(z ′)
)

∧
(
(Rb(z) ∧ z < y) ∨ (Rc(z) ∧ z ≥ y)

))
with parameter v = 35 consistent with training examples.

21

Strings as Background Structures

String a1 . . . an over alphabet Σ viewed as structure with

I universe {1, . . . , n},
I binary order relation ≤ on positions,

I for each a ∈ Σ a unary relation Ra that contains all positions

i such that ai = a.

Example

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacbcba

Formula

ϕ(x ; y) = Ra(x) ∧ ∃z
(

z < x ∧ ∀z ′
(

z < z ′ < x → Ra(z ′)
)

∧
(
(Rb(z) ∧ z < y) ∨ (Rc(z) ∧ z ≥ y)

))
with parameter v = 35 consistent with training examples.

21

Learning with Local Access

Local access in a string means that for each position we can

retrieve the previous and the next position.

Theorem (G., Löding, Ritzert 2017)

1. There are learners running in time tO(1) for quantifier-free

formulas and 1-dimensional existential formulas over strings.

2. There is no sublinear learning algorithm for ∃∀-formulas or

2-dimensional existential formulas over strings.

22

Learning with Local Access

Local access in a string means that for each position we can

retrieve the previous and the next position.

Theorem (G., Löding, Ritzert 2017)

1. There are learners running in time tO(1) for quantifier-free

formulas and 1-dimensional existential formulas over strings.

2. There is no sublinear learning algorithm for ∃∀-formulas or

2-dimensional existential formulas over strings.

22

Learning with Local Access

Local access in a string means that for each position we can

retrieve the previous and the next position.

Theorem (G., Löding, Ritzert 2017)

1. There are learners running in time tO(1) for quantifier-free

formulas and 1-dimensional existential formulas over strings.

2. There is no sublinear learning algorithm for ∃∀-formulas or

2-dimensional existential formulas over strings.

22

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO) is the extension of

first-order logic FO that allows quantification not only over the

elements of a structure, but also over sets of elements.

Theorem (Büchi, Elgot, Trakhtenbrot)

A language L ⊆ Σ∗ is regular if and only if the corresponding class

of string structures is definable in MSO.

Goal
Learning algorithms for MSO-definable hypotheses.

Bummer
Previous theorem shows that learning MSO (even full FO) is not

possible in sublinear time.

23

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO) is the extension of

first-order logic FO that allows quantification not only over the

elements of a structure, but also over sets of elements.

Theorem (Büchi, Elgot, Trakhtenbrot)

A language L ⊆ Σ∗ is regular if and only if the corresponding class

of string structures is definable in MSO.

Goal
Learning algorithms for MSO-definable hypotheses.

Bummer
Previous theorem shows that learning MSO (even full FO) is not

possible in sublinear time.

23

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO) is the extension of

first-order logic FO that allows quantification not only over the

elements of a structure, but also over sets of elements.

Theorem (Büchi, Elgot, Trakhtenbrot)

A language L ⊆ Σ∗ is regular if and only if the corresponding class

of string structures is definable in MSO.

Goal
Learning algorithms for MSO-definable hypotheses.

Bummer
Previous theorem shows that learning MSO (even full FO) is not

possible in sublinear time.

23

Monadic Second-Order Logic

Monadic Second-Order Logic (MSO) is the extension of

first-order logic FO that allows quantification not only over the

elements of a structure, but also over sets of elements.

Theorem (Büchi, Elgot, Trakhtenbrot)

A language L ⊆ Σ∗ is regular if and only if the corresponding class

of string structures is definable in MSO.

Goal
Learning algorithms for MSO-definable hypotheses.

Bummer
Previous theorem shows that learning MSO (even full FO) is not

possible in sublinear time.

23

Building an Index

Local Access is too weak
If we can only access the neighbours of a position, we may end up

seeing nothing relevant.

Example

. . . baac . . .

Solution: Index on Background Structure

We can resolve this by building an index data structure over the

background string.

We do this is a pre-processing phase where we only have access

to the background structure, but not yet the training examples.

24

Building an Index

Local Access is too weak
If we can only access the neighbours of a position, we may end up

seeing nothing relevant.

Example

. . . baac . . .

Solution: Index on Background Structure

We can resolve this by building an index data structure over the

background string.

We do this is a pre-processing phase where we only have access

to the background structure, but not yet the training examples.

24

Building an Index

Local Access is too weak
If we can only access the neighbours of a position, we may end up

seeing nothing relevant.

Example

. . . baac . . .

Solution: Index on Background Structure

We can resolve this by building an index data structure over the

background string.

We do this is a pre-processing phase where we only have access

to the background structure, but not yet the training examples.

24

Factorisation Trees as Index Data

Structures

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

A factorisation tree for a string B is an (ordered, unranked) tree

whose
I leaves are labelled by the letters of the string,
I inner nodes are labelled by the MSO-type (of quantifier rank

q) of the string “below” these nodes.

Simons Factorisation Trees (Simon 1982)

We can construct a factorisation tree of constant height for a

given string in linear time (where the constant depends

non-elementarily on the quantifier rank q).

25

Factorisation Trees as Index Data

Structures

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

A factorisation tree for a string B is an (ordered, unranked) tree

whose
I leaves are labelled by the letters of the string,

I inner nodes are labelled by the MSO-type (of quantifier rank

q) of the string “below” these nodes.

Simons Factorisation Trees (Simon 1982)

We can construct a factorisation tree of constant height for a

given string in linear time (where the constant depends

non-elementarily on the quantifier rank q).

25

Factorisation Trees as Index Data

Structures

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

A factorisation tree for a string B is an (ordered, unranked) tree

whose
I leaves are labelled by the letters of the string,
I inner nodes are labelled by the MSO-type (of quantifier rank

q) of the string “below” these nodes.

Simons Factorisation Trees (Simon 1982)

We can construct a factorisation tree of constant height for a

given string in linear time (where the constant depends

non-elementarily on the quantifier rank q).

25

Factorisation Trees as Index Data

Structures

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

A factorisation tree for a string B is an (ordered, unranked) tree

whose
I leaves are labelled by the letters of the string,
I inner nodes are labelled by the MSO-type (of quantifier rank

q) of the string “below” these nodes.

Simons Factorisation Trees (Simon 1982)

We can construct a factorisation tree of constant height for a

given string in linear time (where the constant depends

non-elementarily on the quantifier rank q).

25

Factorisation Trees as Index Data

Structures

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

A factorisation tree for a string B is an (ordered, unranked) tree

whose
I leaves are labelled by the letters of the string,
I inner nodes are labelled by the MSO-type (of quantifier rank

q) of the string “below” these nodes.

Simons Factorisation Trees (Simon 1982)

We can construct a factorisation tree of constant height for a

given string in linear time

(where the constant depends

non-elementarily on the quantifier rank q).

25

Factorisation Trees as Index Data

Structures

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

A factorisation tree for a string B is an (ordered, unranked) tree

whose
I leaves are labelled by the letters of the string,
I inner nodes are labelled by the MSO-type (of quantifier rank

q) of the string “below” these nodes.

Simons Factorisation Trees (Simon 1982)

We can construct a factorisation tree of constant height for a

given string in linear time (where the constant depends

non-elementarily on the quantifier rank q).
25

Learning MSO

Theorem (G., Löding, Ritzert 2017)

There is a learner for MSO over strings with pre-processing time

O(n) and learning time tO(1).

26

Pre-Processing

In the pre-processing phase, our algorithm builds a Simon

factorisation tree for the background string B.

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

27

Learning Phase 1

One by one, the training examples are incorporated into the

factorisation tree.

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

To process a new example, we need to follow a path to the root

an re-structure the tree along the way. The height of the tree

may increase by an additive constant.

28

Learning Phase 1

One by one, the training examples are incorporated into the

factorisation tree.

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

To process a new example, we need to follow a path to the root

an re-structure the tree along the way. The height of the tree

may increase by an additive constant.

28

Learning Phase 1

One by one, the training examples are incorporated into the

factorisation tree.

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

To process a new example, we need to follow a path to the root

an re-structure the tree along the way. The height of the tree

may increase by an additive constant.

28

Learning Phase 1

One by one, the training examples are incorporated into the

factorisation tree.

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

To process a new example, we need to follow a path to the root

an re-structure the tree along the way. The height of the tree

may increase by an additive constant.

28

Learning Phase 1

One by one, the training examples are incorporated into the

factorisation tree.

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

To process a new example, we need to follow a path to the root

an re-structure the tree along the way. The height of the tree

may increase by an additive constant.

28

Learning Phase 1

One by one, the training examples are incorporated into the

factorisation tree.

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

To process a new example, we need to follow a path to the root

an re-structure the tree along the way. The height of the tree

may increase by an additive constant.

28

Learning Phase 1

One by one, the training examples are incorporated into the

factorisation tree.

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

To process a new example, we need to follow a path to the root

an re-structure the tree along the way. The height of the tree

may increase by an additive constant.

28

Learning Phase 2

To find a suitable choice of parameters, one has to process the

tree in a top-down manner along branches from the root to the

leaves (one branch per parameter).

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

29

Learning Phase 2

To find a suitable choice of parameters, one has to process the

tree in a top-down manner along branches from the root to the

leaves (one branch per parameter).

baaaacabcaaaaaaaaabaaaaabaacaaaaaabaaaaaacaaaaabbacccaacb

29

Where do we go from here?

30

Open Problems

I Many technical questions are wide open: further classes of

structures, other complexity measures, new logics. . .

I What are suitable logics anyway?

I Go beyond Boolean classification.

I Can we design practical learning algorithms for our

framework?

31

Open Problems

I Many technical questions are wide open: further classes of

structures, other complexity measures, new logics. . .

I What are suitable logics anyway?

I Go beyond Boolean classification.

I Can we design practical learning algorithms for our

framework?

31

Open Problems

I Many technical questions are wide open: further classes of

structures, other complexity measures, new logics. . .

I What are suitable logics anyway?

I Go beyond Boolean classification.

I Can we design practical learning algorithms for our

framework?

31

Open Problems

I Many technical questions are wide open: further classes of

structures, other complexity measures, new logics. . .

I What are suitable logics anyway?

I Go beyond Boolean classification.

I Can we design practical learning algorithms for our

framework?

31

Vision

Design an data analysis system much like a databases system,

providing an interface to “predictive queries” and for querying

complex ML models (like ANNs).

32

References

I Martin Grohe and Gyorgy Turán.

Learnability and Definability in Trees and Similar Structures.

Theory of Computing Systems 37(1):193-220, 2004.

I Martin Grohe and Martin Ritzert.

Learning first-order definable concepts over structures of

small degree,

arXiv:1701.05487 [cs.LG].

Conference version in Proceedings of the 32nd IEEE

Symposium on Logic in Computer Science, 2017.

I Martin Grohe, Christof Löding, and Martin Ritzert.

Learning MSO-Definable Hypotheses on Strings,

arXiv:1708.08081 [cs.LG].

Conference version in Proceedings of the 28th International

Conference on Algorithmic Learning Theory, 2017.

33

https://lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/grotur04.pdf
https://arxiv.org/abs/1701.05487
https://arxiv.org/abs/1701.05487
https://arxiv.org/abs/1708.08081

	A Declarative Model-Theoretic Framework for ML
	First-Order Hypotheses on Low-Degree Structures
	Monadic Second-Order Hypotheseson Strings
	Where do we go from here?

