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Process Algebra

Models consist of agents which engage in actions.
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The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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Stochastic process algebras

Stochastic process algebra

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.
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The CTMC can be analysed numerically (linear algebra) or by
stochastic simulation.
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Integrated analysis

Qualitative verification complemented by quantitative verification.

Reachability analysisSpecification matchingModel checking
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Benefits of integration

Properties of the underlying mathematical structure may be
deduced by the construction at the process algebra level.

Compositionality can be exploited both for model construction
and (in some cases) for model analysis.

Formal reasoning techniques such as equivalence relations and
model checking can be used to manipulate or interrogate
models.

For example the congruence Markovian bisimulation, allows
exact model reduction to be carried out compositionally.

Stochastic model checking based on the Continuous
Stochastic Logic (CSL) allows automatic evaluation of
quantified properties of the behaviour of the system.
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Modelling in a Data Rich World

There are many situations in which we wish to model and analyse
behaviour of complex systems, which are operational and generate
data, but which many not be completely transparent to us.

I will use the example of systems biology, where particular
biological phenomena are observed and wet lab experiments can
typically collect data on some parts of the system, but the basic
mechanisms, or the parameters governing their behaviour, are
unknown.
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Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

A. Regev and E. Shapiro Cells as computation, Nature 419, 2002.
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Formal modelling in systems biology

Formal languages provide a convenient interface for describing
complex systems, reflecting what is known about the
components and their behaviour.

High-level abstraction eases writing and manipulating models.

They are compiled into executable models which can be run
to deepen understanding of the model.

Formal nature lends itself to automatic, rigorous methods for
analysis and verification.

Executing the model generates data that can be compared
with biological data.

. . . but what if parts of the system are unknown?

Jasmin Fisher, Thomas A. Henzinger: Executable cell biology. Nature Biotechnology 2007
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Bio-PEPA modelling

The state of the system at any time consists of the local
states of each of its “species” components, describing
biochemical entities.

The local states of components are quantitative rather than
functional, i.e. biological changes to species are represented as
distinct components.

A component varying its state corresponds to it varying its
amount through reactions modelled as interactions between
components.

The effect of a reaction is to vary the parameter of a
component by a number corresponding to the stoichiometry of
this species in the reaction.
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The semantics

The semantics is defined by two transition relations:

First, a capability relation — is a transition possible?;

Second, a stochastic relation — gives rate of a transition,
derived from the parameters of the model.
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Example

I RSI
S S

R
spread

stop1
stop2

k_s = 0.5;

k_r = 0.1;

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]
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Optimizing models

Usual process of parameterising a model is iterative and manual.

model

data

simulate/
analyse

update
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Alternative perspective

?

?

Model creation is data-driven



Stochastic Process Algebras Modelling in a Data Rich World ProPPA Inference Results Conclusions

Machine Learning: Bayesian statistics

prior

posterior

data

inference

Represent belief and uncertainty as probability distributions
(prior, posterior).

Treat parameters and unobserved variables similarly.

Bayes’ Theorem:

P(θ | D) =
P(θ) · P(D | θ)

P(D)

posterior ∝ prior · likelihood
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Modelling

Thus there are two approaches to model construction:

Machine Learning: extracting a model from the data generated by
the system, or refining a model based on system
behaviour using statistical techniques.

Mechanistic Modelling: starting from a description or hypothesis,
construct a formal model that algorithmically mimics
the behaviour of the system, validated against data.
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Comparing the techniques

Data-driven modelling:

+ rigorous handling of parameter uncertainty
- limited or no treatment of stochasticity
- in many cases bespoke solutions are required

which can limit the size of system which can be
handled

Mechanistic modelling:

+ general execution ”engine” (deterministic or
stochastic) can be reused for many models

+ models can be used speculatively to investigate
roles of parameters, or alternative hypotheses

- parameters are assumed to be known and fixed,
or costly approaches must be used to seek
appropriate parameterisation
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Developing a probabilistic programming approach

What if we could...

include information about uncertainty in the model?

automatically use observations to refine this uncertainty?

do all this in a formal context?

Starting from the existing process algebra (Bio-PEPA), we have
developed a new language ProPPA that addresses these issues.

A.Georgoulas, J.Hillston, D.Milios, G.Sanguinetti: Probabilistic Programming Process Algebra. QEST 2014.
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Probabilistic programming

A programming paradigm for describing incomplete knowledge
scenarios, and resolving the uncertainty.

Programs are probabilistic models in a high level language,
like software code.

Offers automated inference without the need to write bespoke
solutions.

Platforms: IBAL, Church, Infer.NET, Fun, Anglican,
WebPPL,....

Key actions: specify a distribution, specify observations, infer
posterior distribution.
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Probabilistic programming workflow

Describe how the data is generated in syntax like a
conventional programming language, but leaving some
variables uncertain.

Specify observations, which impose constraints on acceptable
outputs of the program.

Run program forwards: Generate data consistent with
observations.

Run program backwards: Find values for the uncertain
variables which make the output match the observations.
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A Probabilistic Programming Process Algebra: ProPPA

The objective of ProPPA is to retain the features of the stochastic
process algebra:

simple model description in terms of components

rigorous semantics giving an executable version of the model...

... whilst also incorporating features of a probabilistic programming
language:

recording uncertainty in the parameters

ability to incorporate observations into models

access to inference to update uncertainty based on
observations
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Example Revisited

I RSI
S S

R
spread

stop1
stop2
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I[10] BC
∗
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R[0]
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Additions

Declaring uncertain parameters:

k s = Uniform(0,1);

k t = Uniform(0,1);

Providing observations:

observe(’trace’)

Specifying inference approach:

infer(’ABC’)
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observe(’trace’)

infer(’ABC’) //Approximate Bayesian Computation
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Semantics

A Bio-PEPA model can be interpreted as a CTMC; however,
CTMCs cannot capture uncertainty in the rates (every
transition must have a concrete rate).

ProPPA models include uncertainty in the parameters, which
translates into uncertainty in the transition rates.

A ProPPA model should be mapped to something like a
distribution over CTMCs.
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parameter

model

k = 2

CTMC
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parameter

model

k ∈ [0,5]

set
 of CTMCs
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parameter

model

k ∼ p

distribution
over CTMCs

μ
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Constraint Markov Chains

Constraint Markov Chains (CMCs) are a generalization of DTMCs,
in which the transition probabilities are not concrete, but can take
any value satisfying some constraints.

Constraint Markov Chain

A CMC is a tuple 〈S , o,A,V , φ〉, where:

S is the set of states, of cardinality k.

o ∈ S is the initial state.

A is a set of atomic propositions.

V : S → 22
A

gives a set of acceptable labellings for each state.

φ : S × [0, 1]k → {0, 1} is the constraint function.

Caillaud et al., Constraint Markov Chains, Theoretical Computer Science, 2011
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Constraint Markov Chains

In a CMC, arbitrary constraints are permitted, expressed through
the function φ: φ(s, ~p) = 1 iff ~p is an acceptable vector of
transition probabilities from state s.

However,

CMCs are defined only for the discrete-time case, and

this does not say anything about how likely a value is to be
chosen, only about whether it is acceptable.

To address these shortcomings, we define Probabilistic
Constraint Markov Chains.
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Probabilistic CMCs

A Probabilistic Constraint Markov Chain is a tuple 〈S , o,A,V , φ〉,
where:

S is the set of states, of cardinality k.

o ∈ S is the initial state.

A is a set of atomic propositions.

V : S → 22
A

gives a set of acceptable labellings for each state.

φ : S × [0,∞)k → [0,∞) is the constraint function.

This is applicable to continuous-time systems.

φ(s, ·) is now a probability density function on the transition
rates from state s.
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Semantics of ProPPA

The semantics definition follows that of Bio-PEPA, which is
defined using two transition relations:

Capability relation — is a transition possible?

Stochastic relation — gives distribution of the rate of a
transition

The distribution over the parameter values induces a distribution
over transition rates.

Rules are expressed as state-to-function transition systems
(FuTS1).

This gives rise the underlying PCMC.

1
De Nicola et al., A Uniform Definition of Stochastic Process Calculi, ACM Computing Surveys, 2013
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Simulating Probabilistic Constraint Markov Chains

Probabilistic Constraint Markov Chains are open to two alternative
dynamic interpretations:

1 Uncertain Markov Chains: For each trajectory, for each
uncertain transition rate, sample once at the start of the run
and use that value throughout;

2 Imprecise Markov Chains: During each trajectory, each time a
transition with an uncertain rate is encountered, sample a
value but then discard it and re-sample whenever this
transition is visited again.

Our current work is focused on the Uncertain Markov Chain case.
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Inference

P(θ | D) ∝ P(θ)P(D | θ)

Exact inference is impossible, as we cannot calculate the
likelihood.

We must use approximate algorithms or approximations of the
system.

The ProPPA semantics does not define a single inference
algorithm, allowing for a modular approach.

Different algorithms can act on different input (time-series vs
properties), return different results or in different forms.
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Inferring likelihood in uncertain CTMCs

Transient state probabilities can be expressed as:

dpi (t)

dt
=

∑
j 6=i

pj(t) · qji − pi (t)
∑
j 6=i

qij

The probability of a single observation (y , t) can then be expressed
as

p(y , t) =
∑
i∈S

pi (t)π(y | i)

where π(y | i) is the probability of observing y when in state i .

The likelihood can then be expressed as

P(D | θ) =
N∏
j=1

∑
i∈S

p(i |θ)(tj)π(yj | i)
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Calculating the transient probabilities

For finite state-spaces, the transient probabilities can, in principle,
be computed as

p(t) = p(0)eQt .

Likelihood is hard to compute:

Computing eQt is expensive if the state space is large

Impossible directly in infinite state-spaces
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Basic Inference

Approximate Bayesian Computation is a simple
simulation-based solution:

Approximates posterior distribution over parameters as a set of
samples
Likelihood of parameters is approximated with a notion of
distance.
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Approximate Bayesian Computation

ABC algorithm

1 Sample a parameter set from the prior distribution.

2 Simulate the system using these parameters.

3 Compare the simulation trace obtained with the observations.

4 If distance < ε, accept, otherwise reject.

This results in an approximation to the posterior distribution.
As ε→ 0, set of samples converges to true posterior.
We use a more elaborate version based on Markov Chain Monte
Carlo sampling.
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Inference for infinite state spaces

Various methods become inefficient or inapplicable as the
state-space grows.

How to deal with unbounded systems?

Multiple simulation runs

Large population approximations (diffusion, Linear Noise,. . . )

Systematic truncation

Random truncations
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Expanding the likelihood

The likelihood can be written as an infinite series:

p(x ′, t ′ | x , t) =
∞∑

N=0

p(N)(x ′, t ′ | x , t)

=
∞∑

N=0

[
f (N)(x ′, t ′ | x , t)− f (N−1)(x ′, t ′ | x , t)

]
where

x∗ = max{x , x ′}

p(N)(x ′, t ′ | x , t) is the probability of going from state x at time t to
state x ′ at time t ′ through a path with maximum state x∗ + N

f (N) is the same, except the maximum state cannot exceed x∗ + N
(but does not have to reach it)

Using Russian Roulette truncation we can estimate the infinite sum with
a random truncation.
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Example model

I RSI
S S

R

k_s = Uniform(0,1);

k_r = Uniform(0,1);

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]

observe(’trace’)

infer(’ABC’) //Approximate Bayesian Computation
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Results

Tested on the rumour-spreading example, giving the two
parameters uniform priors.

Approximate Bayesian Computation

Returns posterior as a set of points (samples)

Observations: time-series (single simulation)
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Results: ABC
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Results: ABC
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Genetic Toggle Switch

Two mutually-repressing genes: promoters (unobserved) and
their protein products

Bistable behaviour: switching induced by environmental
changes

Synthesised in E. coli2

Stochastic variant3 where switching is induced by noise

2
Gardner, Cantor & Collins, Construction of a genetic toggle switch in Escherichia coli, Nature, 2000

3
Tian & Burrage, Stochastic models for regulatory networks of the genetic toggle switch, PNAS, 2006
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Genetic Toggle Switch
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Toggle switch model: species

G1 = activ1 ↑ + deact1 ↓ + expr1 ⊕;
G2 = activ2 ↑ + deact2 ↓ + expr2 ⊕;

P1 = expr1 ↑ + degr1 ↓ + deact2 ⊕ ;

P2 = expr2 ↑ + degr2 ↓ + deact1 ⊕

G1[1] <*> G2[0] <*> P1[20] <*> P2[0]

observe(toggle_obs);

infer(rouletteGibbs);
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θ 1 = Gamma(3,5); //etc...

kineticLawOf expr1 : θ 1 * G1;

kineticLawOf expr2 : θ 2 * G2;

kineticLawOf degr1 : θ 3 * P1;

kineticLawOf degr2 : θ 4 * P2;

kineticLawOf activ1 : θ 5 * (1 - G1);

kineticLawOf activ2 : θ 6 * (1 - G2);

kineticLawOf deact1 : θ 7 * exp(r ∗ P2) * G1;

kineticLawOf deact2 : θ 8 * exp(r ∗ P1) * G2;

G1 = activ1 ↑ + deact1 ↓ + expr1 ⊕;
G2 = activ2 ↑ + deact2 ↓ + expr2 ⊕;
P1 = expr1 ↑ + degr1 ↓ + deact2 ⊕ ;

P2 = expr2 ↑ + degr2 ↓ + deact1 ⊕

G1[1] <*> G2[0] <*> P1[20] <*> P2[0]

observe(toggle_obs);

infer(rouletteGibbs);
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Experiment

Simulated observations

Gamma priors on all parameters (required by algorithm)

Goal: learn posterior of 8 parameters

5000 samples taken using the Gibbs-like random truncation
algorithm
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Observations used
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Summary

ProPPA is a process algebra that incorporates uncertainty and
observations directly in the model, influenced by probabilistic
programming.

Syntax remains similar to Bio-PEPA.

Semantics defined in terms of an extension of Constraint
Markov Chains.

Observations can be either time-series or logical properties.

Parameter inference based on random truncations (Russian
Roulette) offers new possibilities for inference.
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Challenges and Future Directions

The value of observations

Can we reason about the “distance” between µ and µ∗?
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Challenges and Future Directions

Heterogeneous populations

What if we are seeking the “optimal mix” rather than the best
individual representative?
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