
Bayes’ Network Analysis
by Program Verification

Joost-Pieter Katoen

Alan Turing Institute, January 2018

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 1/62

Perspective
“There are several reasons why probabilistic programming could prove
to be revolutionary for machine intelligence and scientific modelling.” 1

Why? Probabilistic programming
1. . . . obviates the need to manually provide inference methods

2. . . . enables rapid prototyping

3. . . . clearly separates the model and the inference procedures
1Ghahramani leads the Cambridge ML Group, and is with CMU, UCL, and Turing Institute.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 2/62

Predictive probabilistic programming

Verifiable programs are preferable to simulative guarantees.

Our take: reason on program code, compositionally.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 3/62

Probabilistic graphical models

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 4/62

Student’s mood after an exam

How likely does a well-prepared student end up with a bad mood
after getting a bad grade for an easy exam?

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 5/62

Printer troubleshooting in Windows 95

How likely is it that your print is garbled given that
the ps-file is not and the page orientation is portrait?

see also https://www.youtube.com/watch?v=PyBHYPkwB-Y

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 6/62

https://www.youtube.com/watch?v=PyBHYPkwB-Y

Probabilistic programs

What?
Programs with random assignments and conditioning

Why?
▶ Random assignments: to describe randomised algorithms
▶ Conditioning: to describe stochastic decision making

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 7/62

Applications

Languages: webPPL, ProbLog, R2, Figaro,

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 8/62

Roadmap

1 Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

4 Runtime analysis

5 How long to sample a Bayes’ network?

6 Epilogue

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 9/62

Probabilistic weakest pre-conditions

Overview

1 Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

4 Runtime analysis

5 How long to sample a Bayes’ network?

6 Epilogue

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 10/62

Probabilistic weakest pre-conditions

Probabilistic GCL

Kozen McIver Morgan

▶ skip empty statement
▶ diverge divergence
▶ x := E assignment
▶ observe (G) conditioning
▶ prog1 ; prog2 sequential composition
▶ if (G) prog1 else prog2 choice
▶ prog1 [p] prog2 probabilistic choice
▶ while (G) prog iteration

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 11/62

Probabilistic weakest pre-conditions

Let’s start simple

x := 0 [0.5] x := 1;
y := -1 [0.5] y := 0;
observe (x+y = 0)

This program blocks two runs as they violate x+y = 0. Outcome:

Pr[x =0, y =0] = Pr[x =1, y =−1] = 1/2

Observations thus normalize the probability of the “feasible” program runs

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 12/62

Probabilistic weakest pre-conditions

A loopy program
For 0 < p < 1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {

i := i+1;
(c := false [p] c := true)

}
observe (odd(i))

The feasible program runs have a probability ∑N≥0 (1−p)2N ⋅p =
1

2 − p

This program models the distribution:
Pr[i = 2N+1] = (1−p)2N ⋅ p ⋅ (2−p) for N ≥ 0

Pr[i = 2N] = 0

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 13/62

Probabilistic weakest pre-conditions

Or, equivalently

int i := 0;
repeat {

c := true;
i := 0;
while (c) {

i := i+1;
(c := false [p] c := true)

}
} until (odd(i))

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 14/62

Probabilistic weakest pre-conditions

Weakest pre-expectations [McIver & Morgan 2004]

An expectation2 maps states onto R≥0 ∪ {∞ }. It is the quantitative
analogue of a predicate. Let f ≤ g iff f (s) ≤ g (s), for every state s.

An expectation transformer is a total function between two expectations.

The transformer wp (P, f) yields the least expectation e on P’s initial state
ensuring that P terminates with expectation f .

Annotation {e}P {f } holds for total correctness iff e ≤ wp (P, f) .

Weakest liberal pre-expectation wlp (P, f) = “wp (P, f) + Pr[P diverges]′′.

2
≠ expectations in probability theory.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 15/62

Probabilistic weakest pre-conditions

Expectation transformer semantics of pGCL
Syntax

skip

diverge

x := E

observe (G)

P1 ; P2

if (G) P1 else P2

P1 [p] P2

while (G)P

Semantics wp (P, f)

f
0
f (x ∶= E)
[G] ⋅ f
wp (P1,wp (P2, f))
[G] ⋅ wp (P1, f) + [¬G] ⋅ wp (P2, f)
p ⋅ wp (P1, f) + (1−p) ⋅ wp (P2, f)
µX . ([G] ⋅ wp (P,X) + [¬G] ⋅ f)

µ is the least fixed point operator wrt. the ordering ≤.

wlp-semantics differs from wp-semantics only for while and diverge.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 16/62

Probabilistic weakest pre-conditions

Examples
1. Let program P be:

x := 5 [4/5] x := 10

For f = x , we have
wp (P, x) = 4

5 ⋅wp (x ∶= 5, x) + 1
5 ⋅wp (x ∶= 10, x) = 4

5 ⋅5 +
1
5 ⋅10 = 6

2. Let program P ′ be:
x := x+5 [4/5] x := 10

For f = x , we have:
wp (P ′, x) = 4

5 ⋅wp (x +∶= 5, x)+ 1
5 ⋅wp (x ∶= 10, x) = 4

5 ⋅(x+5)+
1
5 ⋅10 =

4x
5 + 6

3. For program P ′ (again) and f = [x = 10], we have:

wp (P ′, [x=10]) =
4
5 ⋅ wp (x ∶= x+5, [x=10]) + 1

5 ⋅ wp (x ∶= 10, [x=10])
=

4
5 ⋅ [x+5 = 10] + 1

5 ⋅ [10 = 10]
=

4⋅[x=5]+1
5

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 17/62

Probabilistic weakest pre-conditions

An operational perspective

For program P, input s and expectation f :

wp (P, f) (s)
wlp (P, 1) (s) = E{ Rew[[P]] (s,◇sink ∩ ¬◇↯) }

The ratio wp (P, f) /wlp (P, 1) for input s equals3 the conditional expected reward
to reach a successful terminal state sink while satisfying all observes in MC [[P]].

For finite-state programs, wp-reasoning can be done
with model checkers such as PRISM and Storm (www.stormchecker.org).

3Either both sides are equal or both sides are undefined.
Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 18/62

www.stormchecker.org

Bayesian inference by program analysis

Overview

1 Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

4 Runtime analysis

5 How long to sample a Bayes’ network?

6 Epilogue

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 19/62

Bayesian inference by program analysis

Bayesian inference

How likely does a well-prepared student end up with a bad mood
after getting a bad grade for an easy exam?

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 20/62

Bayesian inference by program analysis

Bayesian inference

Pr(D = 0,G = 0,M = 0 ∣ P = 1) =
Pr(D = 0,G = 0,M = 0,P = 1)

Pr(P = 1)

=
0.6 ⋅ 0.5 ⋅ 0.9 ⋅ 0.3

0.3 = 0.27

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 21/62

Bayesian inference by program analysis

Bayesian inference by program verification

▶ Exact inference of Bayesian networks is NP-hard

▶ Approximate inference of BNs is NP-hard too

▶ Typically simulative analyses are employed
▶ Rejection Sampling
▶ Markov Chain Monte Carlo (MCMC)
▶ Importance Sampling
▶

▶ Here: weakest precondition-reasoning

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 22/62

Bayesian inference by program analysis

I.i.d-loops

f is unaffected by P if none of f ’s variables are modified by P:

x is a variable of f iff ∃s.∃v , u ∶ f (s[x = v]) ≠ f (s[x = u])

If g is unaffected by program P, then: wp (P, g ⋅ f) = g ⋅ wp (P, f)

Loop while(G)P is iid wrt. expectation f whenever:

both wp (P, [G]) and wp (P, [¬G] ⋅ f) are unaffected by P.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 23/62

Bayesian inference by program analysis

Example: sampling within a circle

while ((x-5)**2 + (y-5)**2 >= 25){
x := uniform(0..10);
y := uniform(0..10)

}

This program is iid for every f , as both are unaffected by P’s body:

wp (P, [G]) =
48
121 and

wp (P, [¬G]⋅f) =
1
121

10p

∑
i=0

10p

∑
j=0

[(i/p−5)2 + (j/p−5)2 < 25] ⋅ f (x/(i/p), y/(j/p))

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 24/62

Bayesian inference by program analysis

Weakest precondition of iid-loops

If while(G)P is iid for expectation f , it holds for every state s:

wp (while(G)P, f) (s) = [G](s) ⋅ wp (P, [¬G]⋅f) (s)
1 − wp (P, [G]) (s) + [¬G](s) ⋅ f (s)

where we let 0
0 = 0.

Proof: use wp (whilen(G)P, f) = [G] ⋅ wp (P, [¬G]⋅f) ⋅
n−2

∑
i=0

(wp (P, [G])i) + [¬G] ⋅ f

No loop invariant, martingale, or ranking function needed. Fully automatable.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 25/62

Bayesian inference by program analysis

Bayesian inference

How likely does a well-prepared student end up with a bad mood
after getting a bad grade for an easy exam?

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 26/62

Bayesian inference by program analysis

Bayesian networks as programs
▶ Take a topological sort of the BN’s vertices, e.g., D;P;G ;M

▶ Map each conditional probability table (aka: node) to a program, e.g.:
if (xD = 0 && xP = 0) {

xG := 0 [0.95] xG := 1
} else if (xD = 1 && xP = 1) {
xG := 0 [0.05] xG := 1
} else if (xD = 0 && xP = 1) {
xG := 0 [0.5] xG := 1
} else if (xD = 1 && xP = 0) {
xG := 0 [0.6] xG := 1

}

▶ Condition on the evidence, e.g., for P = 1 we get:

repeat { progD ; progP; progG ; progM } until (P=1)

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 27/62

Bayesian inference by program analysis

Properties of BN programs

repeat { progD ; progP; progG ; progM } until (P=1)

1. Every BN-program naturally represents rejection sampling

2. Every BN-program is iid for every expectation f

3. Every BN-program almost surely terminates

4. A BN-program’s size is linear in the BN’s size

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 28/62

Bayesian inference by program analysis

Soundness

For BN B over V with evidence obs for O ⊆ V and value v for node v :

wp
⎛
⎜
⎝
prog(B, obs), ⋀

v∈V \O
xv = v

⎞
⎟
⎠

ÍÒÒÑÒÒÒÏ
wp of the BN program of B

= Pr
⎛
⎜
⎝
⋀

v∈V \O
v = v ∣ ⋀

o∈O
o = obs(o)

⎞
⎟
⎠

ÍÒÒÒÑÒÒÏ
joint distribution of B

where prog(B, obs) equals repeat progB until (⋀o∈O xo = obs(o)).

Thus: wp-reasoning of BN-programs equals exact Bayes’ inference

As BN-programs are iid for every f , this is fully automatable

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 29/62

Bayesian inference by program analysis

Exact inference by wp-reasoning

Ergo: exact Bayesian inference can be done by wp-reasoning, e.g.,

wp (Pmood , [xD = 0 ∧ xG = 0 ∧ xM = 0]) =
Pr(D = 0,G = 0,M = 0,P = 1)

Pr(P = 1) = 0.27

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 30/62

Termination

Overview

1 Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

4 Runtime analysis

5 How long to sample a Bayes’ network?

6 Epilogue

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 31/62

Termination

Termination proofs: the classical case

→ loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (s i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
• •

•
• •

•

V (s4)

V (s5)

V (s5) ≺ V (s4)

•

arrival at 0 guaranteed
by well–foundedness of ≻

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 32/62

Termination

Termination

[Esparza et al., 2012]

“[Ordinary] termination is a purely topological property [. . .], but almost-sure
termination is not. [. . .] Proving almost–sure termination requires arithmetic
reasoning not offered by termination provers."

Proving a.s.-termination for a single input is Π2-complete
(the same holds for approximate a.s.-termination)

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 33/62

Termination

Almost-sure termination

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program does not always terminate. It almost surely terminates.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 34/62

Termination

Proving almost-sure termination

The symmetric random walk:

while (x > 0) { x := x-1 [0.5] x := x+1 }

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2

This observation is enough to witness almost-sure termination!

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 35/62

Termination

Proving almost-sure termination

Goal: prove a.s.–termination of while(G) P

Ingredients:
▶ A supermartingale V mapping states onto non-negative reals

▶ V (sn) ≥ E {V (sn+1) ∣ V (s0), . . . ,V (sn)}
▶ Running body P on state s ⊧ G does not increase E(V (s))
▶ Loop iteration ceases if V (s) = 0

▶ and a progress condition: on each loop iteration in s i

▶ V (s i) = v decreases by ≥ d(v) with probability ≥ p(v)
▶ with antitone p (“probability”) and d (“decrease”) on V ’s values

Then: while(G) P a.s.-terminates on every input

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 36/62

Termination

Proving almost-sure termination

→ loop iterations
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

V (s i)

s1 s2 s3 s4 s5 s6 s7 s8 s9

•
•

•
•

•

•

•

V (s1)

V (s2)

d(V (s1))

with prob. ≥ p(V (s1))

V (s4)

V (s5)

d(V (s4))

with prob. ≥ p(V (s4))

d (V1) ≤ d (V4)
by antitone d

p(V1) ≤ p(V4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof ruleThe closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 37/62

Termination

The symmetric random walk

▶ Recall:

while (x > 0) { x := x-1 [0.5] x := x+1 }

▶ Witnesses of almost-sure termination:
▶ V = x
▶ p(v) = 1/2 and d(v) = 1

That’s all you need to prove almost-sure termination!

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 38/62

Termination

A symmetric-in-the-limit random walk

▶ Consider the program:

while (x > 0) { p := x/(2*x+1) ; x := x-1 [p] x := x+1 }

▶ Witnesses of almost-sure termination:
▶ V = Hx , where Hx is x -th Harmonic number 1 + 1/2 + . . . + 1/x

▶ p(v) = 1/3 and d(v) = {
1/x if v > 0 and Hx−1 < v ≤ Hx

1 if v = 0

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 39/62

Termination

Expressiveness

This proof rule covers many a.s.-terminating programs
that are out-of-reach for almost all existing proof rules

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 40/62

Runtime analysis

Overview

1 Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

4 Runtime analysis

5 How long to sample a Bayes’ network?

6 Epilogue

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 41/62

Runtime analysis

Null a.s.-termination

x := 10; while (x > 0) { x := x-1 [0.5] x := x+1 }

This program almost surely terminates
but requires an infinite expected time to do so.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 42/62

Runtime analysis

Positive almost-sure termination

Deciding whether a program a.s. terminates in

finitely many steps on every input, is Π0
3-complete

Being positively a.s.-terminating is not preserved by sequential composition

Nonetheless:
Expected run-times can be determined compositionally

ert (P, t) bounds P’s expected run-time if P’s continuation takes t time.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 43/62

Runtime analysis

Expected runtime transformer

Syntax

▶ skip

▶ diverge

▶ x := mu

▶ observe (G)

▶ P1 ; P2

▶ if (G) P1 else P2

▶ while(G)P

Semantics ert (P, t)

▶ 1+t
▶ ∞

▶ 1 + λs.E[[µ]](s) (λv .t[x ∶= v](s))
▶ [G] ⋅ (1+t)
▶ ert (P1, ert (P2, t))
▶ 1 + [G] ⋅ ert (P1, t) + [¬G] ⋅ ert (P2, t)
▶ µX . 1 + ([G] ⋅ ert (P,X) + [¬G] ⋅ t)

µ is the least fixed point operator wrt. the ordering ≤ on run-times

and a set of proof rules 4 to get two-sided bounds on run-times of loops

4Certified using the Isabelle/HOL theorem prover; see [Hölzl, ITP 2016].
Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 44/62

Runtime analysis

Run-time invariant synthesis

while (x > 0) { x := x-1 }

A lower ω-invariant is:

Jn = 1 + [0 < x < n]⋅2x
ÍÒÒÑÒÒÏ
on iteration

+ [x ≥ n]⋅ (2n−1)
ÍÒÒÑ ÒÒÏ
on termination

We obtain:

lim
n→∞

(1 + [0 < x < n]⋅2x + [x ≥ n]⋅(2n−1)) = 1 + [x > 0]⋅2x

is a lower bound on the program’s runtime.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 45/62

Runtime analysis

Run-time invariant synthesis
while (c) { {c := false [0.5] c := true}; x := 2*x} ;
while (x > 0) { x := x-1 }

Template for a lower ω-invariant:

In = 1 + [c ≠ 1] ⋅ (1 + [x > 0]⋅2x)
ÍÒÒÑ ÒÒÏ

on termination
+ [c = 1] ⋅ (an + bn ⋅ [x > 0]⋅2x)

ÍÒÒÑ ÒÒÏ
on iteration

The derived constraints are:

a0 ≤ 2 and an+1 ≤ 7/2 + 1/2⋅an and b0 ≤ 0 and bn+1 ≤ 1 + bn

This admits the solution an = 7 − 5/2n and bn = n. Then: limn→∞ In = ∞

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 46/62

Runtime analysis

Coupon collector’s problem

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 47/62

Runtime analysis

Coupon collector’s problem

cp := [0,...,0]; // no coupons yet
i := 1; // coupon to be collected next
x := 0: // number of coupons collected
while (x < N) {

while (cp[i] != 0) {
i := uniform(1..N) // next coupon

}
cp[i] := 1; // coupon i obtained
x++; // one coupon less to go

}

Using our ert-calculus one can prove that expected run-time is Θ(N ⋅ logN).
By systematic code verification à la Floyd-Hoare. Machine checkable.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 48/62

How long to sample a Bayes’ network?

Overview

1 Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

4 Runtime analysis

5 How long to sample a Bayes’ network?

6 Epilogue

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 49/62

How long to sample a Bayes’ network?

How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

“the main challenge in this setting [sampling-based approaches] is that many
samples that are generated during execution are ultimately rejected for not
satisfying the observations."

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 50/62

How long to sample a Bayes’ network?

A toy Bayesian network

This BN is parametric (in a)

How often to sample this BN given the evidence G = 0?

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 51/62

How long to sample a Bayes’ network?

Rejection sampling

For a given Bayesian network and some evidence:

1. Sample from the joint distribution described by the BN
2. If the sample complies with the evidence, accept the sample and halt
3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Q: How many samples do we need on average for a single iid-sample?

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 52/62

How long to sample a Bayes’ network?

Sampling time for example BN

Rejection sampling for G = 0 requires 200a2 − 40a − 460
89a2 − 69a − 21

samples:

For a ∈ [0.1, 0.78], EST is below 18; for a ≥ 0.98, 100 samples are needed

For real-life BNs, the EST may exceed 1015

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 53/62

How long to sample a Bayes’ network?

Expected runtime of iid-loops

For a.s.-terminating iid-loop while(G)P for which every iteration runs in
the same expected time, we have:

ert (while(G)P, t) = 1 + [G] ⋅ 1 + ert (P, [¬G]⋅t)
1 − wp (P, [G]) + [¬G](s) ⋅ t

where 0/0 ∶= 0 and a/0 ∶=∞ for a ≠ 0.

Proof: similar as for the inference (wp) using the decomposition result:
ert (P, t) = ert (P, 0) + wp (P, t)

No loop invariant, martingale, or metering function needed. Fully automatable.

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 54/62

How long to sample a Bayes’ network?

Example: sampling within a circle

while ((x-5)**2 + (y-5)**2 >= 25){
x := uniform(0..10);
y := uniform(0..10)

}

This iid-loop is a.s.-terminating, and every iteration has same expected time.

Then: ert (Pcircle , 0) = 1 + [(x−5)2 + (y−5)2 ≥ 25] ⋅ 36373
So: 1 + 363/73 ≈ 5.97 operations are required on average using rejection sampling

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 55/62

How long to sample a Bayes’ network?

How long to sample a Bayesian network?

Expected runtime of BN programs
For every runtime t we have:

ert
⎛
⎜⎜⎜
⎝
repeat Seq until (G)
ÍÒÒÑÒÒ Ï

program of the BN

, t
⎞
⎟⎟⎟
⎠

=
1 + ert (Seq, [G] ⋅ t)

wp (Seq, [G])

Seq is a sequence of blocks, where a block corresponds to a single BN node.

A closed-form for a BN’s expected runtime can be obtained compositionally.

Fully automated way to obtain a BN’s expected sampling time

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 56/62

How long to sample a Bayes’ network?

The student’s mood example

ert
⎛
⎜⎜⎜⎜
⎝
repeat D; P; G; M until (P=1)
ÍÒÒÒÑÒÒÒÏ

program of student mood’s BN
, 0

⎞
⎟⎟⎟⎟
⎠
=

1 + ert (D; P; G ; M, 0)
wp (D; P; G ; M, [P = 1]) ≈ 23.46

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 57/62

How long to sample a Bayes’ network?

Experimental results

Benchmark BNs from www.bnlearn.com

BN ∣V ∣ ∣E ∣ aMB ∣O∣ EST time (s) ∣O∣ EST time (s)
hailfinder 56 66 3.54 5 5 105 0.63 9 9 106 0.46

hepar2 70 123 4.51 1 1.5 102 1.84 2 — MO

win95pts 76 112 5.92 3 4.3 105 0.36 12 4 107 0.42

pathfinder 135 200 3.04 3 2.9 104 31 7 ∞ 5.44

andes 223 338 5.61 3 5.2 103 1.66 7 9 104 0.99

pigs 441 592 3.92 1 2.9 103 0.74 7 1.5 106 1.02

munin 1041 1397 3.54 5 ∞ 1.43 10 1.2 1018 65

aMB = average Markov Blanket size, a measure of independence in BNs

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 58/62

www.bnlearn.com

How long to sample a Bayes’ network?

Printer troubleshooting in Windows 95

Java implementation executes about 107 steps in a single second
For ∣O∣=17, an EST of 1015 yields 3.6 years simulation for a single iid-sample

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 59/62

Epilogue

Overview

1 Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

4 Runtime analysis

5 How long to sample a Bayes’ network?

6 Epilogue

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 60/62

Epilogue

Predictive probabilistic programming

Analysing probabilistic programs
at source code level, compositionally.

Some open problems:
▶ Completeness
▶ Sensitivity analysis
▶ Nondeterminism
▶ Query processing
▶ Invariant synthesis
▶

Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 61/62

Epilogue

Thanks to my co-authors!
▶ F. Olmedo, F. Gretz, N. Jansen, B. Kaminski, JPK, A. McIver

Conditioning in probabilistic programming. ACM TOPLAS 2018.
▶ B. Kaminski, JPK.

On the hardness of almost-sure termination. MFCS 2015.
▶ B. Kaminski, JPK, C. Matheja, and F. Olmedo.

Expected run-time analysis of probabilistic programs 5 . ESOP 2016.
▶ F. Olmedo, B. Kaminski, JPK, C. Matheja.

Reasoning about recursive probabilistic programs. LICS 2016.
▶ A. McIver, C. Morgan, B. Kaminski, JPK.

A new proof rule for almost-sure termination. POPL 2018.
▶ K. Batz, B. Kaminski, JPK, C. Matheja.

How long, O Bayesian network, will I sample thee? ESOP 2018.

pGCL model checking: www.stormchecker.org

5EATCS best paper award of ETAPS 2016.
Joost-Pieter Katoen Bayes’ Network Analysis by Program Verification 62/62

www.stormchecker.org

	Probabilistic weakest pre-conditions
	Bayesian inference by program analysis
	Termination
	Runtime analysis
	How long to sample a Bayes' network?
	Epilogue

