Bayes' Network Analysis by Program Verification

Joost-Pieter Katoen

Alan Turing Institute, January 2018

"There are several reasons why probabilistic programming could prove to be revolutionary for machine intelligence and scientific modelling." ¹

REVIEW Probabilistic machine learning and artificial intelligence

Why? Probabilistic programming

- $1. \ \ldots$ obviates the need to manually provide inference methods
- 2. ... enables rapid prototyping
- 3. ... clearly separates the model and the inference procedures

¹Ghahramani leads the Cambridge ML Group, and is with CMU, UCL, and Turing Institute.

Joost-Pieter Katoen

Bayes' Network Analysis by Program Verification

Predictive probabilistic programming

Verifiable programs are preferable to simulative guarantees.

Our take: reason on program code, compositionally.

Probabilistic graphical models

Student's mood after an exam

How likely does a well-prepared student end up with a bad mood after getting a bad grade for an easy exam?

Printer troubleshooting in Windows 95

How likely is it that your print is garbled given that the ps-file is not and the page orientation is portrait?

see also https://www.youtube.com/watch?v=PyBHYPkwB-Y

What?

Programs with random assignments and conditioning

Why?

- Random assignments: to describe randomised algorithms
- Conditioning: to describe stochastic decision making

Applications

Languages: webPPL, ProbLog, R2, Figaro,

Roadmap

1 Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

- Runtime analysis
- 5 How long to sample a Bayes' network?

Overview

1 Probabilistic weakest pre-conditions

- 2 Bayesian inference by program analysis
- 3 Termination
- 4 Runtime analysis
- 5 How long to sample a Bayes' network?

Probabilistic GCL

Kozen

empty statement divergence assignment **conditioning** sequential composition choice

probabilistic choice

iteration

- 🕨 skip
- diverge
- ▶ x := E
- observe (G)
- ▶ prog1 ; prog2
- if (G) prog1 else prog2
- ▶ prog1 [p] prog2
- while (G) prog

Let's start simple

x := 0 [0.5] x := 1; y := -1 [0.5] y := 0; observe (x+y = 0)

This program blocks two runs as they violate x+y = 0. Outcome:

$$Pr[x=0, y=0] = Pr[x=1, y=-1] = \frac{1}{2}$$

Observations thus normalize the probability of the "feasible" program runs

A loopy program

For 0 an arbitrary probability:

```
bool c := true;
int i := 0;
while (c) {
    i := i+1;
    (c := false [p] c := true)
}
observe (odd(i))
```

The feasible program runs have a probability $\sum_{N\geq 0} (1-p)^{2N} \cdot p = \frac{1}{2-p}$

This program models the distribution:

$$Pr[i = 2N+1] = (1-p)^{2N} \cdot p \cdot (2-p) \text{ for } N \ge 0$$
$$Pr[i = 2N] = 0$$

Or, equivalently

```
int i := 0;
repeat {
    c := true;
    i := 0;
    while (c) {
        i := i+1;
        (c := false [p] c := true)
    }
} until (odd(i))
```

Weakest pre-expectations

[McIver & Morgan 2004]

An expectation² maps states onto $\mathbb{R}_{\geq 0} \cup \{\infty\}$. It is the quantitative analogue of a predicate. Let $f \leq g$ iff $f(s) \leq g(s)$, for every state s.

An expectation transformer is a total function between two expectations.

The transformer wp(P, f) yields the least expectation e on P's initial state ensuring that P terminates with expectation f.

Annotation $\{e\} P\{f\}$ holds for total correctness iff $e \leq wp(P, f)$.

Weakest liberal pre-expectation wlp(P, f) = "wp(P, f) + Pr[P diverges]".

²≠ expectations in probability theory.

Expectation transformer semantics of pGCL

Syntax	Semantics $wp(P, f)$
skip	f
diverge	0
x := E	f(x := E)
observe (G)	[G] • f
P1 ; P2	$wp(P_1, wp(P_2, f))$
if (G)P1 else P2	$[G] \cdot wp(P_1, \mathbf{f}) + [\neg G] \cdot wp(P_2, \mathbf{f})$
P1 [p] P2	$p \cdot wp(P_1, f) + (1-p) \cdot wp(P_2, f)$
while (G)P	$\mu X. ([G] \cdot wp(P, X) + [\neg G] \cdot f)$

 μ is the least fixed point operator wrt. the ordering \leq .

wlp-semantics differs from wp-semantics only for while and diverge.

Examples

1. Let program *P* be: x := 5 [4/5] x := 10For f = x, we have $wp(P, x) = \frac{4}{5} \cdot wp(x := 5, x) + \frac{1}{5} \cdot wp(x := 10, x) = \frac{4}{5} \cdot 5 + \frac{1}{5} \cdot 10 = 6$ 2. Let program P' be: x := x+5 [4/5] x := 10For f = x, we have: $wp(P', x) = \frac{4}{5} \cdot wp(x + := 5, x) + \frac{1}{5} \cdot wp(x := 10, x) = \frac{4}{5} \cdot (x + 5) + \frac{1}{5} \cdot 10 = \frac{4x}{5} + 6$ 3. For program P' (again) and f = [x = 10], we have:

$$wp(P', [x=10]) = \frac{4}{5} \cdot wp(x := x+5, [x=10]) + \frac{1}{5} \cdot wp(x := 10, [x=10])$$
$$= \frac{4}{5} \cdot [x+5 = 10] + \frac{1}{5} \cdot [10 = 10]$$
$$= \frac{4 \cdot [x=5] + 1}{5}$$

An operational perspective

For program P, input s and expectation f:

$$\frac{wp(P, f)(s)}{wlp(P, \mathbf{1})(s)} = \mathbb{E} \{ \operatorname{Rew}^{\mathbb{L}P\mathbb{I}}(s, \diamondsuit sink \cap \neg \diamondsuit t) \}$$

The ratio wp(P, f) / wlp(P, 1) for input *s* equals³ the conditional expected reward to reach a successful terminal state *sink* while satisfying all observes in MC [[*P*]].

For finite-state programs, wp-reasoning can be done with model checkers such as PRISM and Storm (www.stormchecker.org).

³Either both sides are equal or both sides are undefined.

Overview

- Probabilistic weakest pre-conditions
- 2 Bayesian inference by program analysis
 - 3 Termination
 - 4 Runtime analysis
 - 5 How long to sample a Bayes' network?
 - 6 Epilogue

Bayesian inference

How likely does a well-prepared student end up with a bad mood after getting a bad grade for an easy exam?

Joost-Pieter Katoen

Bayes' Network Analysis by Program Verification 20,

Bayesian inference

D = 0 $D =$	1	Diffici	ulty	P	reparation)	P = 0	P =
0.6 0.4			/			/	0.7	0.3
			1	/				
	<i>G</i> = 0	<i>G</i> = 1		/				
D = 0, P = 0	0.95	0.05						
D = 1, P = 1	0.05	0.95	Gi	ade				
D = 0, P = 1	0.5	0.5						
D = 1, P = 0	0.6	0.4						
				+		M = 0	M = 1	
			(м	ood)	G = 0	0.9	0.1	1
				/	C = 1	0.2	0.7	1

$$Pr(D = 0, G = 0, M = 0 | P = 1) = \frac{Pr(D = 0, G = 0, M = 0, P = 1)}{Pr(P = 1)}$$
$$= \frac{0.6 \cdot 0.5 \cdot 0.9 \cdot 0.3}{0.3} = 0.27$$

Joost-Pieter Katoen

Bayes' Network Analysis by Program Verification 21

Bayesian inference by program verification

Exact inference of Bayesian networks is NP-hard

- Approximate inference of BNs is NP-hard too
- Typically simulative analyses are employed
 - Rejection Sampling
 - Markov Chain Monte Carlo (MCMC)
 - Importance Sampling
 - ▶

Here: weakest precondition-reasoning

I.i.d-loops

f is *unaffected* by P if none of f's variables are modified by P:

x is a variable of f iff $\exists s. \exists v, u: f(s[x = v]) \neq f(s[x = u])$

If g is unaffected by program P, then: $wp(P, g \cdot f) = g \cdot wp(P, f)$

Loop while (G) P is iid wrt. expectation f whenever:

both wp(P, [G]) and $wp(P, [\neg G] \cdot f)$ are unaffected by P.

Example: sampling within a circle

This program is iid for every f, as both are unaffected by P's body:

$$wp(P,[G]) = \frac{48}{121} \text{ and}$$

$$wp(P,[\neg G] \cdot f) = \frac{1}{121} \sum_{i=0}^{10p} \sum_{j=0}^{10p} [(i/p-5)^2 + (j/p-5)^2 < 25] \cdot f(x/(i/p), y/(j/p))$$

Weakest precondition of iid-loops

If while (G) P is iid for expectation f, it holds for every state s:

$$wp(while(G)P, f)(s) = [G](s) \cdot \frac{wp(P, [\neg G] \cdot f)(s)}{1 - wp(P, [G])(s)} + [\neg G](s) \cdot f(s)$$

where we let $\frac{0}{0} = 0$.

Proof: use $wp(while_n(G)P, f) = [G] \cdot wp(P, [\neg G] \cdot f) \cdot \sum_{i=0}^{n-2} (wp(P, [G])^i) + [\neg G] \cdot f$

No loop invariant, martingale, or ranking function needed. Fully automatable.

Bayesian inference

How likely does a well-prepared student end up with a bad mood after getting a bad grade for an easy exam?

Joost-Pieter Katoen

Bayes' Network Analysis by Program Verification 26/

Bayesian networks as programs

- ► Take a topological sort of the BN's vertices, e.g., D; P; G; M
- Map each conditional probability table (aka: node) to a program, e.g.:

if
$$(xD = 0 \&\& xP = 0)$$
 {
 $xG := 0 [0.95] xG := 1$
 $\} else if $(xD = 1 \&\& xP = 1)$ {
 $xG := 0 [0.05] xG := 1$
 $\} else if $(xD = 0 \&\& xP = 1)$ {
 $xG := 0 [0.5] xG := 1$
 $\} else if $(xD = 1 \&\& xP = 0)$ {
 $xG := 0 [0.6] xG := 1$
 $\}$$$$

▶ Condition on the evidence, e.g., for *P* = 1 we get:

repeat { progD ; progP; progG ; progM } until (P=1)

G = 10.05 0.95 0.5 0.4

Properties of BN programs

repeat { progD ; progP; progG ; progM } until (P=1)

- 1. Every BN-program naturally represents rejection sampling
- 2. Every BN-program is iid for every expectation *f*
- 3. Every BN-program almost surely terminates
- 4. A BN-program's size is linear in the BN's size

Soundness

For BN **B** over V with evidence obs for $O \subseteq V$ and value <u>v</u> for node v:

$$\underbrace{wp\left(\operatorname{prog}(B, obs), \bigwedge_{v \in V \setminus O} x_v = \underline{v}\right)}_{\text{wp of the BN program of } B} = \underbrace{Pr\left(\bigwedge_{v \in V \setminus O} v = \underline{v} \mid \bigwedge_{o \in O} o = obs(o)\right)}_{\text{joint distribution of } B}$$

where prog(B, obs) equals repeat progB until $(\bigwedge_{o \in O} x_o = obs(o))$.

Thus: wp-reasoning of BN-programs equals exact Bayes' inference

As BN-programs are iid for every f, this is fully automatable

Exact inference by wp-reasoning

Ergo: exact Bayesian inference can be done by wp-reasoning, e.g.,

$$wp(P_{mood}, [x_D = 0 \land x_G = 0 \land x_M = 0]) = \frac{Pr(D = 0, G = 0, M = 0, P = 1)}{Pr(P = 1)} = 0.27$$

Overview

Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

- 4 Runtime analysis
- 5 How long to sample a Bayes' network?

Termination proofs: the classical case

Termination

[Esparza et al., 2012]

"[Ordinary] termination is a purely topological property [...], but almost-sure termination is not. [...] Proving almost-sure termination requires arithmetic reasoning not offered by termination provers."

Proving a.s.-termination for a single input is Π_2 -complete (the same holds for approximate a.s.-termination)

Almost-sure termination

```
bool c := true;
int i := 0;
while (c) {
    i++;
    (c := false [p] c := true)
}
```

This program does not always terminate. It almost surely terminates.

Proving almost-sure termination

The symmetric random walk:

while $(x > 0) \{ x := x-1 [0.5] x := x+1 \}$

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2This observation is enough to witness almost-sure termination!

Proving almost-sure termination

Goal: prove a.s.-termination of while(G) P

Ingredients:

- ► A supermartingale V mapping states onto non-negative reals
 - $\triangleright V(s_n) \geq \mathbb{E} \{V(s_{n+1}) \mid V(s_0), \ldots, V(s_n)\}$
 - ▶ Running body P on state $s \models G$ does not increase $\mathbb{E}(V(s))$
 - Loop iteration ceases if V(s) = 0
- and a progress condition: on each loop iteration in s^{i}
 - ▶ $V(s^i) = v$ decreases by $\ge d(v)$ with probability $\ge p(v)$
 - with antitone p ("probability") and d ("decrease") on V's values

Then: while(G) P a.s.-terminates on every input

Termination

The closer to termination, the more V decreases and this becomes the likely

The symmetric random walk

Recall:

while $(x > 0) \{ x := x-1 [0.5] x := x+1 \}$

Witnesses of almost-sure termination:

That's all you need to prove almost-sure termination!

A symmetric-in-the-limit random walk

Consider the program:

while $(x > 0) \{ p := x/(2*x+1) ; x := x-1 [p] x := x+1 \}$

Witnesses of almost-sure termination:

V = H_x , where H_x is x-th Harmonic number $1 + \frac{1}{2} + \ldots + \frac{1}{x}$

•
$$p(v) = \frac{1}{3}$$
 and $d(v) = \begin{cases} \frac{1}{x} & \text{if } v > 0 \text{ and } H_{x-1} < v \le H_x \\ 1 & \text{if } v = 0 \end{cases}$

Expressiveness

This proof rule covers many a.s.-terminating programs that are out-of-reach for almost all existing proof rules

Overview

Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

Runtime analysis

5 How long to sample a Bayes' network?

6 Epilogue

Null a.s.-termination

x := 10; while $(x > 0) \{ x := x-1 [0.5] x := x+1 \}$

This program almost surely terminates but requires an infinite expected time to do so.

Positive almost-sure termination

Deciding whether a program a.s. terminates in finitely many steps on every input, is Π_3^0 -complete

Being positively a.s.-terminating is not preserved by sequential composition

Nonetheless:

Expected run-times can be determined compositionally

ert(P, t) bounds P's expected run-time if P's continuation takes t time.

Expected runtime transformer

Syntax	Semantics ert(P, t)
▶ skip	▶ 1+ <i>t</i>
▶ diverge	►∞
▶ x := mu	$\blacktriangleright 1 + \lambda s.\mathbb{E}_{\llbracket \mu \rrbracket(s)} \left(\lambda v. \mathbf{t}[x \coloneqq v](s) \right)$
▶ observe (G)	$[G] \cdot (1+t)$
▶ P1 ; P2	• $ert(P_1, ert(P_2, t))$
▶ if (G)P1 else P2	▶ $1 + [G] \cdot ert(P_1, \mathbf{t}) + [\neg G] \cdot ert(P_2, \mathbf{t})$
while(G)P	$\blacktriangleright \mu X.1 + ([G] \cdot ert(P, X) + [\neg G] \cdot \mathbf{t})$

 μ is the least fixed point operator wrt. the ordering \leq on run-times and a set of proof rules ⁴ to get two-sided bounds on run-times of loops

 4 Certified using the Isabelle/HOL theorem prover; see [Hölzl, ITP 2016].

Run-time invariant synthesis

A lower ω -invariant is:

$$J_n = \mathbf{1} + \underbrace{[0 < x < n] \cdot 2x}_{\text{on iteration}} + \underbrace{[x \ge n] \cdot (2n-1)}_{\text{on termination}}$$

We obtain:

$$\lim_{n \to \infty} (\mathbf{1} + [0 < x < n] \cdot 2x + [x \ge n] \cdot (2n-1)) = \mathbf{1} + [x > 0] \cdot 2x$$

is a lower bound on the program's runtime.

Run-time invariant synthesis

while (c) { {c := false [0.5] c := true}; x := 2*x} ;
while (x > 0) { x := x-1 }

Template for a lower ω -invariant:

$$I_n = \mathbf{1} + \underbrace{[c \neq 1] \cdot (\mathbf{1} + [x > 0] \cdot 2x)}_{\text{on termination}} + \underbrace{[c = 1] \cdot (a_n + b_n \cdot [x > 0] \cdot 2x)}_{\text{on iteration}}$$

The derived constraints are:

 $a_0 \le 2$ and $a_{n+1} \le 7/2 + 1/2 \cdot a_n$ and $b_0 \le 0$ and $b_{n+1} \le 1 + b_n$

This admits the solution $a_n = 7 - 5/2^n$ and $b_n = n$. Then: $\lim_{n \to \infty} I_n = \infty$

EM 250

200

150

100

50

Coupon collector's problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

by

P. ERDŐS and A. RÉNYI

Coupon collector's problem

```
cp := [0,...,0]; // no coupons yet
i := 1; // coupon to be collected next
x := 0: // number of coupons collected
while (x < N) {
   while (cp[i] != 0) {
        i := uniform(1..N) // next coupon
   }
   cp[i] := 1; // coupon i obtained
   x++; // one coupon less to go
}
```

Using our ert-calculus one can prove that expected run-time is $\Theta(N \cdot \log N)$. By systematic code verification à la Floyd-Hoare. Machine checkable.

Overview

- Probabilistic weakest pre-conditions
- 2 Bayesian inference by program analysis
- 3 Termination
- 4 Runtime analysis
- 5 How long to sample a Bayes' network?

6 Epilogue

How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

"the main challenge in this setting [sampling-based approaches] is that many samples that are generated during execution are ultimately rejected for not satisfying the observations."

A toy Bayesian network

This BN is parametric (in a)

How often to sample this BN given the evidence G = 0?

Rejection sampling

For a given Bayesian network and some evidence:

- 1. Sample from the joint distribution described by the BN
- 2. If the sample complies with the evidence, accept the sample and halt
- 3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Q: How many samples do we need on average for a single iid-sample?

Sampling time for example BN

Rejection sampling for
$$G = 0$$
 requires
$$\frac{200a^2 - 40a - 460}{89a^2 - 69a - 21}$$
 samples:

For $a \in [0.1, 0.78]$, EST is below 18; for $a \ge 0.98$, 100 samples are needed

For real-life BNs, the EST may exceed 10¹⁵

Expected runtime of iid-loops

For a.s.-terminating iid-loop while (G) P for which every iteration runs in the same expected time, we have:

$$ert(while(G)P, t) = 1 + [G] \cdot \frac{1 + ert(P, [\neg G] \cdot t)}{1 - wp(P, [G])} + [\neg G](s) \cdot t$$

where 0/0 := 0 and $a/0 := \infty$ for $a \neq 0$.

Proof: similar as for the inference (wp) using the decomposition result: ert(P, t) = ert(P, 0) + wp(P, t)

No loop invariant, martingale, or metering function needed. Fully automatable.

Example: sampling within a circle

This iid-loop is a.s.-terminating, and every iteration has same expected time.

Then:
$$ert(P_{circle}, \mathbf{0}) = \mathbf{1} + [(x-5)^2 + (y-5)^2 \ge 25] \cdot \frac{363}{73}$$

So: $1 + \frac{363}{73} \approx 5.97$ operations are required on average using rejection sampling

How long to sample a Bayesian network?

Expected runtime of BN programs

For every runtime *t* we have:

$$ert\left(\underbrace{\text{repeat Seq until (G)}}_{\text{program of the BN}}, t\right) = \frac{1 + ert(\text{Seq}, [G] \cdot t)}{wp(\text{Seq}, [G])}$$

Seq is a sequence of blocks, where a block corresponds to a single BN node.

A closed-form for a BN's expected runtime can be obtained compositionally.

Fully automated way to obtain a BN's expected sampling time

The student's mood example

Experimental results

Benchmark BNs from www.bnlearn.com

BN	V	E	aMB	0	EST	time (s)	0	EST	time (s)
hailfinder	56	66	3.54	5	5 10 ⁵	0.63	9	9 10 ⁶	0.46
hepar2	70	123	4.51	1	1.5 10 ²	1.84	2	_	MO
win95pts	76	112	5.92	3	4.3 10 ⁵	0.36	12	4 10 ⁷	0.42
pathfinder	135	200	3.04	3	2.9 10 ⁴	31	7	∞	5.44
andes	223	338	5.61	3	5.2 10 ³	1.66	7	9 10 ⁴	0.99
pigs	441	592	3.92	1	2.9 10 ³	0.74	7	1.5 10 ⁶	1.02
munin	1041	1397	3.54	5	œ	1.43	10	1.2 10 ¹⁸	65

aMB = average Markov Blanket size, a measure of independence in BNs

Printer troubleshooting in Windows 95

Java implementation executes about 10^7 steps in a single second For |O|=17, an EST of 10^{15} yields **3.6 years simulation for a single iid-sample**

Overview

Probabilistic weakest pre-conditions

2 Bayesian inference by program analysis

3 Termination

- 4 Runtime analysis
- 5 How long to sample a Bayes' network?

Predictive probabilistic programming

Analysing probabilistic programs at source code level, compositionally.

Some open problems:

- Completeness
- Sensitivity analysis
- Nondeterminism
- Query processing
- Invariant synthesis

• • • • • • •

Thanks to my co-authors!

- F. OLMEDO, F. GRETZ, N. JANSEN, B. KAMINSKI, JPK, A. MCIVER Conditioning in probabilistic programming. ACM TOPLAS 2018.
- ▶ B. Kaminski, JPK.

On the hardness of almost-sure termination. MFCS 2015.

- B. KAMINSKI, JPK, C. MATHEJA, AND F. OLMEDO.
 *Expected run-time analysis of probabilistic programs*⁵. ESOP 2016.
- F. OLMEDO, B. KAMINSKI, JPK, C. MATHEJA.
 Reasoning about recursive probabilistic programs. LICS 2016.
- A. MCIVER, C. MORGAN, B. KAMINSKI, JPK. A new proof rule for almost-sure termination. POPL 2018.
- K. BATZ, B. KAMINSKI, JPK, C. MATHEJA. How long, O Bayesian network, will I sample thee? ESOP 2018.

pGCL model checking: www.stormchecker.org

⁵EATCS best paper award of ETAPS 2016.