Learning Small Strategies Fast

Jan Křetínský

Technical University of Munich, Germany

joint work with P. Ashok, E. Kelmendi, J. Krämer, T. Meggendorfer, M. Weininger (TUM) T. Brázdil (Masaryk University Brno), K. Chatterjee, M. Chmelík, P. Daca, A. Fellner, T. Henzinger, T. Petrov, V. Toman (IST Austria), V. Forejt, M. Kwiatkowska, M. Ujma (Oxford University) D. Parker (University of Birmingham)

Logic and Learning

The Alan Turing Institute January 12, 2018

Controller synthesis and verification

Controller synthesis and verification

Formal methods

- + precise
- scalability issues

Formal methods

- + precise
- scalability issues

MEM-OUT

Formal methods

- + precise
- scalability issues
- can be hard to use

Learning

- weaker guarantees
- + scalable
- + simpler solutions

different objectives

Formal methods

- + precise
- scalability issues
- can be hard to use

Learning

- weaker guarantees
- + scalable
- + simpler solutions

Examples

- Reinforcement learning for efficient strategy synthesis
 - MDP with functional spec (reachability, LTL)^{1 2}
 - MDP with performance spec (mean payoff/average reward)^{3 4}
 - Simple stochastic games (reachability)⁵
- Decision tree learning for efficient strategy representation
 - MDP⁶
 - ► Games⁷

¹Brazdil, Chatterjee, Chmelik, Forejt, K., Kwiatkowska, Parker, Ujma: Verification of Markov Decision Processes Using Learning Algorithms. ATVA 2014

²Daca, Henzinger, K., Petrov: Faster Statistical Model Checking for Unbounded Temporal Properties. TACAS 2016

³Ashok, Chatterjee, Daca, K., Meggendorfer: Value Iteration for Long-run Average Reward in Markov Decision Processes. CAV 2017

⁴K., Meggendorfer: Efficient Strategy Iteration for Mean Payoff in Markov Decision Processes. ATVA 2017

⁵draft

⁶Brazdil, Chatterjee, Chmelik, Fellner, K.: Counterexample Explanation by Learning Small Strategies in Markov Decision Processes. CAV 2015

⁷Brazdil, Chatterjee, K., Toman: Strategy Representation by Decision Trees in Reactive Synthesis. TACAS 2018

1: repeat

3: **for all** transitions
$$s \xrightarrow{a} do$$

4: UPDATE $(s \xrightarrow{a})$

5: **until** $UpBound(s_{init}) - LoBound(s_{init}) < \epsilon$

1: procedure Update($s \xrightarrow{a}$)

- 2: $UpBound(s, a) := \sum_{s' \in S} \Delta(s, a, s') \cdot UpBound(s')$
- 3: $LoBound(s, a) := \sum_{s' \in S} \Delta(s, a, s') \cdot LoBound(s')$
- 4: $UpBound(s) := \max_{a \in A} UpBound(s, a)$
- 5: $LoBound(s) := \max_{a \in A} LoBound(s, a)$

More frequently update what is visited more frequently

1: repeat

3: **for all** transitions
$$s \xrightarrow{a} do$$

4: UPDATE $(s \xrightarrow{a})$

5: **until** $UpBound(s_{init}) - LoBound(s_{init}) < \epsilon$

More frequently update what is visited more frequently

- 2: sample a path from *s*_{init}
- 3: for all visited transitions $s \xrightarrow{a} do$
- 4: Update($s \xrightarrow{a}$)
- 5: **until** $UpBound(s_{init}) LoBound(s_{init}) < \epsilon$

More frequently update what is **visited** more frequently by **reasonably good** strategies

- 2: sample a path from *s*_{init}
- 3: for all visited transitions $s \xrightarrow{a} do$
- 4: Update($s \xrightarrow{a}$)
- 5: **until** $UpBound(s_{init}) LoBound(s_{init}) < \epsilon$

More frequently update what is **visited** more frequently by **reasonably good** strategies

- 2: sample a path from *s*_{init}
- 3: for all visited transitions $s \xrightarrow{a} do$
- 4: Update($s \xrightarrow{a}$)
- 5: **until** $UpBound(s_{init}) LoBound(s_{init}) < \epsilon$

More frequently update what is **visited** more frequently by **reasonably good** strategies

- 2: sample a path from $s_{init} \rightarrow pick$ action $arg max UpBound(s \rightarrow)$
- 3: for all visited transitions $s \xrightarrow{a} do$
- 4: Update($s \xrightarrow{a}$)
- 5: **until** $UpBound(s_{init}) LoBound(s_{init}) < \epsilon$

More frequently update what is **visited** more frequently by **reasonably good** strategies

- 2: sample a path from $s_{init} \rightarrow pick$ action $arg max UpBound(s \rightarrow a)$
- 3: for all visited transitions $s \xrightarrow{a} do$
- 4: Update($s \xrightarrow{a}$)
- 5: **until** $UpBound(s_{init}) LoBound(s_{init}) < \epsilon$

Example	Visited states			
	PRISM	with RL		
zeroconf	4,427,159	977		
wlan	5,007,548	1,995		
firewire	19,213,802	32,214		
mer	26,583,064	1,950		

- explicit map $\sigma: S \to A$
- BDD (binary decision diagrams) encoding its bit representation
- DT (decision tree)

- explicit map $\sigma: S \to A$
- BDD (binary decision diagrams) encoding its bit representation
- DT (decision tree)

Importance of a decision in *s* with respect to \diamond *goal* and strategy σ :

Importance of a decision in *s* with respect to \diamond *goal* and strategy σ :

 $\mathbb{P}^{\sigma}[\diamond s | \diamond goal]$

Example	#states	Value	Explicit	BDD	DT	Rel.err(DT) %		
firewire	481,136	1.0	479,834	4233	1	0.0		
investor	35,893	0.958	28,151	783	27	0.886		
mer	1,773,664	0.200016	MEM-OUT *					
zeroconf	89,586	0.00863	60,463	409	7	0.106		

Example	#states	Value	Explicit	BDD	DT	Rel.err(DT) %	
firewire	481,136	1.0	479,834	4233	1	0.0	
investor	35,893	0.958	28,151	783	27	0.886	
mer	1,773,664	0.200016	MEM-OUT *				
zeroconf	89,586	0.00863	60,463	409	7	0.106	

* MEM-OUT in PRISM, whereas RL yields:

1887 619 **13** 0.00014

Reinforcement learning in verification

- Junges, Jansen, Dehnert, Topcu, Katoen: Safety-Constrained Reinforcement Learning for MDPs. TACAS 2016
- David, Jensen, Larsen, Legay, Lime, Sorensen, Taankvist: On Time with Minimal Expected Cost! ATVA 2014

Strategy representation learning

 Neider, Topcu: An Automaton Learning Approach to Solving Safety Games over Infinite Graphs. TACAS 2016

Invariants generation, theorem provers guidance, ...

Summary

Machine learning in verification

- Scalable heuristics
- Example 1: Speeding up value iteration
 - тесницие: reinforcement learning, BRTDP
 - IDEA: focus on updating "most important parts"
 most often visited by good strategies

Example 2: Small and readable strategies

- тесницие: decision tree learning
- IDEA: based on the importance of states, feed the decisions to the learning algorithm

Learning in Verification (LiVe) at ETAPS

Summary

Machine learning in verification

- Scalable heuristics
- Example 1: Speeding up value iteration
 - тесницие: reinforcement learning, BRTDP
 - IDEA: focus on updating "most important parts"
 most often visited by good strategies

Example 2: Small and readable strategies

- тесницие: decision tree learning
- IDEA: based on the importance of states, feed the decisions to the learning algorithm

Learning in Verification (LiVe) at ETAPS

Thank you

Discussion

Verification using machine learning

- How far do we want to compromise?
- Do we have to compromise?
 - BRTDP, invariant generation, strategy representation don't
- Don't we want more than ML?
 - (ε-)optimal controllers?
 - arbitrary controllers is it still verification?
- What do we actually want?
 - scalability shouldn't overrule guarantees?
 - oracle usage seems fine
 - when is PAC enough?

Discussion

Verification using machine learning

- How far do we want to compromise?
- Do we have to compromise?
 - BRTDP, invariant generation, strategy representation don't
- Don't we want more than ML?
 - (ε-)optimal controllers?
 - arbitrary controllers is it still verification?
- What do we actually want?
 - scalability shouldn't overrule guarantees?
 - oracle usage seems fine
 - when is PAC enough?

Thank you