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Examples 4/13

I Reinforcement learning for efficient strategy synthesis
I MDP with functional spec (reachability, LTL)1 2

I MDP with performance spec (mean payoff/average reward)3 4

I Simple stochastic games (reachability)5

I Decision tree learning for efficient strategy representation
I MDP6

I Games7

1Brazdil, Chatterjee, Chmelik, Forejt, K., Kwiatkowska, Parker, Ujma: Verification of
Markov Decision Processes Using Learning Algorithms. ATVA 2014

2Daca, Henzinger, K., Petrov: Faster Statistical Model Checking for Unbounded
Temporal Properties. TACAS 2016

3Ashok, Chatterjee, Daca, K., Meggendorfer: Value Iteration for Long-run Average
Reward in Markov Decision Processes. CAV 2017

4K., Meggendorfer: Efficient Strategy Iteration for Mean Payoff in Markov Decision
Processes. ATVA 2017

5draft
6Brazdil, Chatterjee, Chmelik, Fellner, K.: Counterexample Explanation by Learning

Small Strategies in Markov Decision Processes. CAV 2015
7Brazdil, Chatterjee, K., Toman: Strategy Representation by Decision Trees

in Reactive Synthesis. TACAS 2018
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Example 1: Computing strategies faster 6/13

More frequently update what is visited more frequently
by reasonably good strategies

1: repeat

2: sample a path from sinit . pick action arg max
a

UpBound(s
a
−→)

3: for all

visited

transitions s
a
−→ do

4: Update(s
a
−→)

5: until UpBound(sinit) − LoBound(sinit) < ε

1: procedure Update(s
a
−→)

2: UpBound(s, a) :=
∑

s′∈S ∆(s, a, s′) · UpBound(s′)
3: LoBound(s, a) :=

∑
s′∈S ∆(s, a, s′) · LoBound(s′)

4: UpBound(s) := maxa∈A UpBound(s, a)
5: LoBound(s) := maxa∈A LoBound(s, a)
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Example
Visited states
PRISM with RL

zeroconf 4,427,159 977
wlan 5,007,548 1,995

firewire 19,213,802 32,214
mer 26,583,064 1,950
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I explicit map σ : S → A
I BDD (binary decision diagrams) encoding its bit representation
I DT (decision tree)
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precise decisions

DT, importance of decisions

Cut off states with zero importance (un-
reachable or useless)

Cut off states with low importance (small
error, ε-optimal strategy)

How to make use of the exact quantities?

Importance of a decision in s with respect to ^goal and strategy σ:

Pσ[^s

| ^goal
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Example #states Value Explicit BDD DT Rel.err(DT) %
firewire 481,136 1.0 479,834 4233 1 0.0
investor 35,893 0.958 28,151 783 27 0.886
mer 1,773,664 0.200016 ——— MEM-OUT ——— *
zeroconf 89,586 0.00863 60,463 409 7 0.106



Example 2: Experimental results 10/13

Example #states Value Explicit BDD DT Rel.err(DT) %
firewire 481,136 1.0 479,834 4233 1 0.0
investor 35,893 0.958 28,151 783 27 0.886
mer 1,773,664 0.200016 ——— MEM-OUT ——— *
zeroconf 89,586 0.00863 60,463 409 7 0.106

* MEM-OUT in PRISM,
whereas RL yields: 1887 619 13 0.00014
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Reinforcement learning in verification

I Junges, Jansen, Dehnert, Topcu, Katoen: Safety-Constrained
Reinforcement Learning for MDPs. TACAS 2016

I David, Jensen, Larsen, Legay, Lime, Sorensen, Taankvist: On Time
with Minimal Expected Cost! ATVA 2014

Strategy representation learning

I Neider, Topcu: An Automaton Learning Approach to Solving Safety
Games over Infinite Graphs. TACAS 2016

Invariants generation, theorem provers guidance, . . .
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Machine learning in verification
I Scalable heuristics
I Example 1: Speeding up value iteration

I technique: reinforcement learning, BRTDP
I idea: focus on updating “most important parts”

= most often visited by good strategies
I Example 2: Small and readable strategies

I technique: decision tree learning
I idea: based on the importance of states,

feed the decisions to the learning algorithm

I Learning in Verification (LiVe) at ETAPS

Thank you
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Verification using machine learning

I How far do we want to compromise?
I Do we have to compromise?

I BRTDP, invariant generation, strategy representation don’t
I Don’t we want more than ML?

I (ε-)optimal controllers?
I arbitrary controllers – is it still verification?

I What do we actually want?
I scalability shouldn’t overrule guarantees?
I oracle usage seems fine
I when is PAC enough?

Thank you



Discussion 13/13

Verification using machine learning

I How far do we want to compromise?
I Do we have to compromise?

I BRTDP, invariant generation, strategy representation don’t
I Don’t we want more than ML?

I (ε-)optimal controllers?
I arbitrary controllers – is it still verification?

I What do we actually want?
I scalability shouldn’t overrule guarantees?
I oracle usage seems fine
I when is PAC enough?

Thank you


