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Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)

Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,

Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism

Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)
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Outline

1 Link prediction & symbolic vs. neural representations

2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)
Fast but restricted (Demeester et al., 2016)
Model-agnostic and fast (Minervini et al., 2017)

3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)

Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary
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Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary
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Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary
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Notation

Constant: homer, bart, lisa etc. (lowercase)

Variable: X, Y etc. (uppercase, universally quantified)
Term: constant or variable
Restricted to function-free terms in this talk
Predicate: fatherOf, parentOf etc.
function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk
Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).
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Tim Rocktäschel End-to-End Differentiable Proving 7/30



Notation

Constant: homer, bart, lisa etc. (lowercase)
Variable: X, Y etc. (uppercase, universally quantified)
Term: constant or variable
Restricted to function-free terms in this talk
Predicate: fatherOf, parentOf etc.
function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk

Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).
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function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk
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Real world knowledge bases (like Freebase, DBPedia, YAGO, etc.) are
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placeOfBirth attribute is missing for 71% of people!
Commonsense knowledge often not stated explicitly
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Symbolic Representations

Symbols (constants and predicates) do not share any information:
grandpaOf 6= grandfatherOf

No notion of similarity: apple ∼ orange, professorAt ∼ lecturerAt

No generalization beyond what can be symbolically inferred:
isFruit(apple), apple ∼ organge, isFruit(orange)?

Hard to work with language, vision and other modalities
‘‘is a film based on the novel of the same name by’’(X, Y)

But... leads to powerful inference mechanisms and proofs for predictions:
fatherOf(abe,homer). parentOf(homer, lisa). parentOf(homer,bart).
grandfatherOf(X,Y) :– fatherOf(X,Z), parentOf(Z,Y).
grandfatherOf(abe,Q)? {Q/lisa}, {Q/bart}

Fairly easy to debug and trivial to incorporate domain knowledge:
Show to domain expert and let her change/add rules and facts
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Neural Representations

Lower-dimensional fixed-length vector representations of symbols
(predicates and constants):
vapple, vorange, vfatherOf, . . . ∈ Rk

Can capture similarity and even semantic hierarchy of symbols:
vgrandpaOf = vgrandfatherOf,
vapple ∼ vorange, vapple < vfruit

Can be trained from raw task data (e.g. facts in a knowledge base)
Can be compositional
v‘‘is the father of’’ = RNNθ(vis, vthe, vfather, vof)
But... need large amount of training data
No direct way of incorporating prior knowledge
vgrandfatherOf(X,Y) :– vfatherOf(X,Z), vparentOf(Z,Y).
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State-of-the-art Neural Link Prediction

livesIn(melinda, seattle)? = fθ(vlivesIn, vmelinda, vseattle)

DistMult (Yang et al., 2015)
vs , vi , vj ∈ Rk

fθ(vs , vi , vj) = v>
s (vi � vj)

=
∑

k

vskvikvjk

ComplEx (Trouillon et al., 2016)
vs , vi , vj ∈ Ck

fθ(vs , vi , vj) =

real(vs)>(real(vi )� real(vj))

+ real(vs)>(imag(vi )� imag(vj))

+ imag(vs)>(real(vi )� imag(vj))

− imag(vs)>(imag(vi )� real(vj))Training Loss
L =

∑
rs (ei ,ej ),y ∈ T

−y log (σ(fθ(vs , vi , vj )))− (1− y) log (1− σ(fθ(vs , vi , vj )))

Learn vs , vi , vj from data
Obtain gradients ∇vsL, ∇viL, ∇vjL by backprop
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Regularization by Propositional Logic

JparentOfK Jhomer,bartK JmotherOfK JfatherOfK

u1 u3u2

dot
dot

dot

u4 u5 u6

sigm sigm sigm
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ct
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u7

1− •
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∗
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• − 1

u10

∗

u11

• + 1
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iff
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Ru
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loss
−log

Lo
ss

fatherOf(X, Y) :– parentOf(X, Y),¬ motherOf(X, Y)

p(F ) = JF K =



fθ(s, i , j) if F = s(i , j)
1− JAK if F = ¬A
JAK JBK if F = A ∧ B
JAK + JBK− JAK JBK if F = A ∨ B
JBK (JAK− 1) + 1 if F = A :– B

L
(
JfatherOf(homer, bart) :–

parentOf(homer, bart) ∧
¬ motherOf(homer, bart)K

)

L(f) = − log (J∀X,Y : f(X,Y)K) = −
∑

(ei ,ej )∈C2 log Jf(ei , ej )K
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Zero-shot Learning Results
Neural Link Prediction (LP)

Deduction Deduction after LP
Deduction before LP Regularization
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Lifted Regularization by Implications
Every father is a parent

Generalises to similar relations (e.g. dad)

Every mother is a parent

Generalises to similar relations (e.g. mum)
Every parent is a relative

No training facts needed!

Before

mother of

father of

parent of

implied by father of

0

After

father of

mother of

parent of

0

mum of

dad of

relative of

∀X,Y : h(X,Y) :– b(X,Y)
∀(ei , ej ) ∈ C2 : JhK> Jei , ejK ≥ JbK> Jei , ejK
JhK ≥ JbK , ∀(ei , ej ) ∈ C2 : Jei , ejK ∈ Rk

+

Demeester et al. (2016), EMNLP 14/30
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Adversarial Regularization

x y x z z y

yx z

Adversary

Clause A: h(X,Y) :– b1(X,Z) ∧ b2(Z,Y)

Link Predictor Link Predictor Link Predictor

φh(x, y) φb1(x, z) φb2(z, y)

JI [φh(x, y) :– φb1(x, z) ∧ φb2(z, y)]

Inconsistency Loss

Adversarial Set S

Regularization by propositional rules needs
grounding – does not scale to large
domains!

Lifted regularization only supports direct
implications
Idea: let grounding be generated by an
adversary and optimize minimax game...
Adversary finds maximally violating
grounding for a given rule
Neural link predictor attempts to minimize
rule violation for given generated
groundings

Minervini et al. (2017), UAI 14/30
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End-to-End Differentiable Prover

Neural network for proving queries to a knowledge base

Proof success differentiable w.r.t. vector representations of symbols
Learn vector representations of symbols end-to-end from proof success
Make use of provided rules in soft proofs
Induce interpretable rules end-to-end from proof success

Rocktäschel and Riedel (2017), NIPS 15/30
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Rocktäschel and Riedel (2017), NIPS 15/30



End-to-End Differentiable Prover

Neural network for proving queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Learn vector representations of symbols end-to-end from proof success

Make use of provided rules in soft proofs
Induce interpretable rules end-to-end from proof success
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Approach

Let’s neuralize Prolog’s Backward Chaining using a Radial Basis Function
kernel for unifying vector representations of symbols!
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Prolog’s Backward Chaining

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Intuition:

Backward chaining translates a query into subqueries via rules, e.g.,
grandfatherOf(abe,bart) 3. fatherOf(abe,Z), parentOf(Z,bart)
It attempts this for all rules in the knowledge base and thus specifies a
depth-first search
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Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=
State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))
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Tim Rocktäschel End-to-End Differentiable Proving 18/30



Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=

State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))
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Unification Failure
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Tim Rocktäschel End-to-End Differentiable Proving 18/30



Neural Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Query

Query

grandfatherOf abe bartgrandpaOf abe bart

grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3.

grandfatherOf

X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bart

X/abe Y/bart

?= ?= ?=
State t

∅

SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))
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Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.

X/abe
Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.
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Training Objective
grandpaOf abe bart
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Y/bart

Z/homer

X/abe
Y/bart

Z/homer

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

1. 1.

3.
1.

1.

3.
1.

2.

3.
2.

1.

3.
2.

2.

fθ(grandpaOf(abe, bart))

max pooling

Loss: negative log-likelihood w.r.t. target proof success

Trained end-to-end using stochastic gradient descent
Vectors are learned such that proof success is high for known facts and
low for sampled negative facts
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Calculation on GPU

Q
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bart
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Experiments

Benchmark Knowledge Bases: Kinship, Nations, UMLS (Kok and Domingos,
2007), and Countries (Bouchard et al., 2015)
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Details

Models implemented in TensorFlow

ComplEx Neural link prediction model by Trouillon et al. (2016)
Prover End-to-end differentiable prover

Proverλ Same, but representations trained with ComplEx as auxiliary task
Rule Templates:
Kinship, Nations & UMLS
20 #1(X,Y) :– #2(X,Y).
20 #1(X,Y) :– #2(Y,X).
20 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S1
3 #1(X,Y) :– #1(Y,X).
3 #1(X,Y) :– #2(X,Z),#2(Z,Y).
Countries S2
3 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S3
3 #1(X,Y) :– #2(X,Z),#3(Z,W),#4(W,Y).
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Results
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Tim Rocktäschel End-to-End Differentiable Proving 25/30



Results

ComplEx Prover

Proverλ

Countries S3 Kinship Nations UMLS
0

20

40

60

80

100

48

70
62

82

57
48

62

8277 76

59

87

Ac
cu

ra
cy

/
H

IT
S@

1
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Examples of Induced Rules

Corpus Induced rules and their confidence

Countries
S1 0.90 locatedIn(X,Y) :– locatedIn(X,Z), locatedIn(Z,Y).
S2 0.63 locatedIn(X,Y) :– neighborOf(X,Z), locatedIn(Z,Y).
S3 0.32 locatedIn(X,Y) :– neighborOf(X,Z), neighborOf(Z,W), locatedIn(W,Y).

Nations

0.68 blockpositionindex(X,Y) :– blockpositionindex(Y,X).
0.46 expeldiplomats(X,Y) :– negativebehavior(X,Y).
0.38 negativecomm(X,Y) :– commonbloc0(X,Y).
0.38 intergovorgs3(X,Y) :– intergovorgs(Y,X).

UMLS
0.88 interacts with(X,Y) :– interacts with(X,Z), interacts with(Z,Y).
0.77 isa(X,Y) :– isa(X,Z), isa(Z,Y).
0.71 derivative of(X,Y) :– derivative of(X,Z), derivative of(Z,Y).
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Outlook

Structured Data

Databases

Explanations

Teacher

Text

Text

Publications
User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?Structured Data

Explanations
Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication

Tim Rocktäschel End-to-End Differentiable Proving 27/30



Outlook

Structured Data

Databases

Explanations

Teacher

Text

Text

Publications

User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Structured Data

Explanations
Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication
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Tim Rocktäschel End-to-End Differentiable Proving 27/30



Outlook

Structured Data

Databases

Explanations

Teacher

Text

Text

Publications

User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Structured Data

Explanations

Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication
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Summary

We proposed various ways of regularizing vector representations of
symbols using rules

We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements
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Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols

Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements
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Thank you!

http://rockt.github.com
tim.rocktaschel@cs.ox.ac.uk
Twitter: @ rockt

http://rockt.github.com
tim.rocktaschel@cs.ox.ac.uk
https://twitter.com/_rockt
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G. Sourek, V. Aschenbrenner, F. Zelezný, and O. Kuzelka. Lifted relational neural networks. In Proceedings of the NIPS Workshop on
Cognitive Computation: Integrating Neural and Symbolic Approaches co-located with the 29th Annual Conference on Neural
Information Processing Systems (NIPS 2015), Montreal, Canada, December 11-12, 2015., 2015. URL
http://ceur-ws.org/Vol-1583/CoCoNIPS_2015_paper_7.pdf.

G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Artif. Intell., 70(1-2):119–165, 1994. doi:
10.1016/0004-3702(94)90105-8. URL http://dx.doi.org/10.1016/0004-3702(94)90105-8.
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