
End-to-End Differentiable Proving

Tim Rocktäschel

Whiteson Research Lab, University of Oxford
http://rockt.github.com Twitter: @ rockt tim.rocktaschel@cs.ox.ac.uk

Logic and Learning Workshop at The Alan Turing Institute

January 12, 2018

http://rockt.github.com
https://twitter.com/_rockt
tim.rocktaschel@cs.ox.ac.uk


Joint Work With

Sebastian Riedel Pasquale Minervini
University College London University College London

Thomas Demeester Sameer Singh
Ghent University University of California, Irvine

Tim Rocktäschel End-to-End Differentiable Proving 1/30

















XKCD, 17th May 2017

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Data Efficiency & Model Interpretability

Tim Rocktäschel End-to-End Differentiable Proving 3/30



XKCD, 17th May 2017

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Data Efficiency & Model Interpretability

Tim Rocktäschel End-to-End Differentiable Proving 3/30



XKCD, 17th May 2017

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Data Efficiency & Model Interpretability

Tim Rocktäschel End-to-End Differentiable Proving 3/30



XKCD, 17th May 2017

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Data Efficiency & Model Interpretability

Tim Rocktäschel End-to-End Differentiable Proving 3/30



XKCD, 17th May 2017

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Data &
Explanations
• Rules
• (Partial) Programs
• Natural Language

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Answers &
Explanations
• Rules
• Programs
• Natural Language
• Plans

Data Efficiency & Model Interpretability

Tim Rocktäschel End-to-End Differentiable Proving 3/30



Expert Systems
• No/little training data
• Interpretable
• Rules manually defined
• No generalization

Neural Networks

• Trained end-to-end
• Strong generalization

• Need a lot of training data
• Not interpretable



Expert Systems
• No/little training data
• Interpretable
• Rules manually defined
• No generalization

Neural Networks

• Trained end-to-end
• Strong generalization

• Need a lot of training data
• Not interpretable



Expert Systems
• No/little training data
• Interpretable

• Rules manually defined
• No generalization

Neural Networks

• Trained end-to-end
• Strong generalization

• Need a lot of training data
• Not interpretable



Expert Systems
• No/little training data
• Interpretable
• Rules manually defined
• No generalization

Neural Networks

• Trained end-to-end
• Strong generalization

• Need a lot of training data
• Not interpretable



Expert Systems
• No/little training data
• Interpretable
• Rules manually defined
• No generalization

Neural Networks

• Trained end-to-end
• Strong generalization

• Need a lot of training data
• Not interpretable



Expert Systems
• No/little training data
• Interpretable
• Rules manually defined
• No generalization

Neural Networks

• Trained end-to-end
• Strong generalization

• Need a lot of training data
• Not interpretable



Expert Systems
• No/little training data
• Interpretable
• Rules manually defined
• No generalization

Neural Networks

• Trained end-to-end
• Strong generalization

• Need a lot of training data
• Not interpretable



Expert Systems
• No/little training data
• Interpretable

• Rules manually defined
• No generalization

Neural Networks

• Trained end-to-end
• Strong generalization

• Need a lot of training data
• Not interpretable



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)

Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,

Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism

Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,

Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism

Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,

Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism

Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,

Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism

Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,
Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .

Statistical Predicate Invention (Kok and Domingos, 2007)
Neural-symbolic Connectionism

Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,
Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism

Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,
Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism

Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,
Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism
Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)

First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,
Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism
Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,
Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism
Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Machine Learning & Logic
Fuzzy Logic (Zadeh, 1965)
Probabilistic Logic Programming, e.g.,

IBAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) . . .

Inductive Logic Programming, e.g.,
Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) . . .
Statistical Predicate Invention (Kok and Domingos, 2007)

Neural-symbolic Connectionism
Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d’Avila Garcez and Zaverucha, 1999)
First-order inference (no training of symbol representations): Unification
Neural Networks (Hölldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

Recent: Logic Tensor Networks (Serafini and d’Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d’Avila Garcez et al. (2012)

Tim Rocktäschel End-to-End Differentiable Proving 5/30



Outline

1 Link prediction & symbolic vs. neural representations

2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)
Fast but restricted (Demeester et al., 2016)
Model-agnostic and fast (Minervini et al., 2017)

3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)

Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary

Tim Rocktäschel End-to-End Differentiable Proving 6/30



Outline

1 Link prediction & symbolic vs. neural representations
2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)
Fast but restricted (Demeester et al., 2016)
Model-agnostic and fast (Minervini et al., 2017)

3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)

Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary

Tim Rocktäschel End-to-End Differentiable Proving 6/30



Outline

1 Link prediction & symbolic vs. neural representations
2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)

Fast but restricted (Demeester et al., 2016)
Model-agnostic and fast (Minervini et al., 2017)

3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)

Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary

Tim Rocktäschel End-to-End Differentiable Proving 6/30



Outline

1 Link prediction & symbolic vs. neural representations
2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)
Fast but restricted (Demeester et al., 2016)

Model-agnostic and fast (Minervini et al., 2017)
3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)

Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary

Tim Rocktäschel End-to-End Differentiable Proving 6/30



Outline

1 Link prediction & symbolic vs. neural representations
2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)
Fast but restricted (Demeester et al., 2016)
Model-agnostic and fast (Minervini et al., 2017)

3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)

Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary

Tim Rocktäschel End-to-End Differentiable Proving 6/30



Outline

1 Link prediction & symbolic vs. neural representations
2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)
Fast but restricted (Demeester et al., 2016)
Model-agnostic and fast (Minervini et al., 2017)

3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)

Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary

Tim Rocktäschel End-to-End Differentiable Proving 6/30



Outline

1 Link prediction & symbolic vs. neural representations
2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)
Fast but restricted (Demeester et al., 2016)
Model-agnostic and fast (Minervini et al., 2017)

3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)
Explicit multi-hop reasoning using neural networks

Inducing rules using gradient descent
4 Outlook & Summary

Tim Rocktäschel End-to-End Differentiable Proving 6/30



Outline

1 Link prediction & symbolic vs. neural representations
2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)
Fast but restricted (Demeester et al., 2016)
Model-agnostic and fast (Minervini et al., 2017)

3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)
Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary

Tim Rocktäschel End-to-End Differentiable Proving 6/30



Outline

1 Link prediction & symbolic vs. neural representations
2 Regularize neural representations using logical rules

Model-agnostic but slow (Rocktäschel et al., 2015)
Fast but restricted (Demeester et al., 2016)
Model-agnostic and fast (Minervini et al., 2017)

3 End-to-end differentiable proving (Rocktäschel and Riedel, 2017)
Explicit multi-hop reasoning using neural networks
Inducing rules using gradient descent

4 Outlook & Summary

Tim Rocktäschel End-to-End Differentiable Proving 6/30



Notation

Constant: homer, bart, lisa etc. (lowercase)

Variable: X, Y etc. (uppercase, universally quantified)
Term: constant or variable
Restricted to function-free terms in this talk
Predicate: fatherOf, parentOf etc.
function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk
Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).

Tim Rocktäschel End-to-End Differentiable Proving 7/30



Notation

Constant: homer, bart, lisa etc. (lowercase)
Variable: X, Y etc. (uppercase, universally quantified)

Term: constant or variable
Restricted to function-free terms in this talk
Predicate: fatherOf, parentOf etc.
function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk
Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).

Tim Rocktäschel End-to-End Differentiable Proving 7/30



Notation

Constant: homer, bart, lisa etc. (lowercase)
Variable: X, Y etc. (uppercase, universally quantified)
Term: constant or variable
Restricted to function-free terms in this talk

Predicate: fatherOf, parentOf etc.
function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk
Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).

Tim Rocktäschel End-to-End Differentiable Proving 7/30



Notation

Constant: homer, bart, lisa etc. (lowercase)
Variable: X, Y etc. (uppercase, universally quantified)
Term: constant or variable
Restricted to function-free terms in this talk
Predicate: fatherOf, parentOf etc.
function from terms to a Boolean

Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk
Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).

Tim Rocktäschel End-to-End Differentiable Proving 7/30



Notation

Constant: homer, bart, lisa etc. (lowercase)
Variable: X, Y etc. (uppercase, universally quantified)
Term: constant or variable
Restricted to function-free terms in this talk
Predicate: fatherOf, parentOf etc.
function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)

Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk
Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).

Tim Rocktäschel End-to-End Differentiable Proving 7/30



Notation

Constant: homer, bart, lisa etc. (lowercase)
Variable: X, Y etc. (uppercase, universally quantified)
Term: constant or variable
Restricted to function-free terms in this talk
Predicate: fatherOf, parentOf etc.
function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)

Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk
Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).

Tim Rocktäschel End-to-End Differentiable Proving 7/30



Notation

Constant: homer, bart, lisa etc. (lowercase)
Variable: X, Y etc. (uppercase, universally quantified)
Term: constant or variable
Restricted to function-free terms in this talk
Predicate: fatherOf, parentOf etc.
function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk

Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).

Tim Rocktäschel End-to-End Differentiable Proving 7/30



Notation

Constant: homer, bart, lisa etc. (lowercase)
Variable: X, Y etc. (uppercase, universally quantified)
Term: constant or variable
Restricted to function-free terms in this talk
Predicate: fatherOf, parentOf etc.
function from terms to a Boolean
Atom: predicate and terms, e.g., parentOf(X, bart)
Literal: atom or negated or atom, e.g.,
not parentOf(bart, lisa)
Rule: head :– body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk
Fact: ground rule (no free variables) with empty body, e.g.,
parentOf(homer,bart).

Tim Rocktäschel End-to-End Differentiable Proving 7/30



Link Prediction

Real world knowledge bases (like Freebase, DBPedia, YAGO, etc.) are
incomplete!

placeOfBirth attribute is missing for 71% of people!
Commonsense knowledge often not stated explicitly
Weak logical relationships that can be used for inferring facts

melinda

billspouseOf microsoftchairmanOf

seattle

headquarteredIn

livesIn?

Das et al. (2017) 8/30



Link Prediction

Real world knowledge bases (like Freebase, DBPedia, YAGO, etc.) are
incomplete!

placeOfBirth attribute is missing for 71% of people!

Commonsense knowledge often not stated explicitly
Weak logical relationships that can be used for inferring facts

melinda

billspouseOf microsoftchairmanOf

seattle

headquarteredIn

livesIn?

Das et al. (2017) 8/30



Link Prediction

Real world knowledge bases (like Freebase, DBPedia, YAGO, etc.) are
incomplete!

placeOfBirth attribute is missing for 71% of people!
Commonsense knowledge often not stated explicitly

Weak logical relationships that can be used for inferring facts
melinda

billspouseOf microsoftchairmanOf

seattle

headquarteredIn

livesIn?

Das et al. (2017) 8/30



Link Prediction

Real world knowledge bases (like Freebase, DBPedia, YAGO, etc.) are
incomplete!

placeOfBirth attribute is missing for 71% of people!
Commonsense knowledge often not stated explicitly
Weak logical relationships that can be used for inferring facts

melinda

billspouseOf microsoftchairmanOf

seattle

headquarteredIn

livesIn?

Das et al. (2017) 8/30



Link Prediction

Real world knowledge bases (like Freebase, DBPedia, YAGO, etc.) are
incomplete!

placeOfBirth attribute is missing for 71% of people!
Commonsense knowledge often not stated explicitly
Weak logical relationships that can be used for inferring facts

melinda

billspouseOf microsoftchairmanOf

seattle

headquarteredIn

livesIn?

Das et al. (2017) 8/30



Link Prediction

Real world knowledge bases (like Freebase, DBPedia, YAGO, etc.) are
incomplete!

placeOfBirth attribute is missing for 71% of people!
Commonsense knowledge often not stated explicitly
Weak logical relationships that can be used for inferring facts

melinda billspouseOf

microsoftchairmanOf

seattle

headquarteredIn

livesIn?

Das et al. (2017) 8/30



Link Prediction

Real world knowledge bases (like Freebase, DBPedia, YAGO, etc.) are
incomplete!

placeOfBirth attribute is missing for 71% of people!
Commonsense knowledge often not stated explicitly
Weak logical relationships that can be used for inferring facts

melinda billspouseOf microsoftchairmanOf

seattle

headquarteredIn

livesIn?

Das et al. (2017) 8/30



Link Prediction

Real world knowledge bases (like Freebase, DBPedia, YAGO, etc.) are
incomplete!

placeOfBirth attribute is missing for 71% of people!
Commonsense knowledge often not stated explicitly
Weak logical relationships that can be used for inferring facts

melinda billspouseOf microsoftchairmanOf

seattle

headquarteredInlivesIn?

Das et al. (2017) 8/30



Symbolic Representations

Symbols (constants and predicates) do not share any information:
grandpaOf 6= grandfatherOf

No notion of similarity: apple ∼ orange, professorAt ∼ lecturerAt

No generalization beyond what can be symbolically inferred:
isFruit(apple), apple ∼ organge, isFruit(orange)?

Hard to work with language, vision and other modalities
‘‘is a film based on the novel of the same name by’’(X, Y)

But... leads to powerful inference mechanisms and proofs for predictions:
fatherOf(abe,homer). parentOf(homer, lisa). parentOf(homer,bart).
grandfatherOf(X,Y) :– fatherOf(X,Z), parentOf(Z,Y).
grandfatherOf(abe,Q)? {Q/lisa}, {Q/bart}

Fairly easy to debug and trivial to incorporate domain knowledge:
Show to domain expert and let her change/add rules and facts

Tim Rocktäschel End-to-End Differentiable Proving 9/30



Symbolic Representations

Symbols (constants and predicates) do not share any information:
grandpaOf 6= grandfatherOf

No notion of similarity: apple ∼ orange, professorAt ∼ lecturerAt

No generalization beyond what can be symbolically inferred:
isFruit(apple), apple ∼ organge, isFruit(orange)?

Hard to work with language, vision and other modalities
‘‘is a film based on the novel of the same name by’’(X, Y)

But... leads to powerful inference mechanisms and proofs for predictions:
fatherOf(abe,homer). parentOf(homer, lisa). parentOf(homer,bart).
grandfatherOf(X,Y) :– fatherOf(X,Z), parentOf(Z,Y).
grandfatherOf(abe,Q)? {Q/lisa}, {Q/bart}

Fairly easy to debug and trivial to incorporate domain knowledge:
Show to domain expert and let her change/add rules and facts

Tim Rocktäschel End-to-End Differentiable Proving 9/30



Symbolic Representations

Symbols (constants and predicates) do not share any information:
grandpaOf 6= grandfatherOf

No notion of similarity: apple ∼ orange, professorAt ∼ lecturerAt

No generalization beyond what can be symbolically inferred:
isFruit(apple), apple ∼ organge, isFruit(orange)?

Hard to work with language, vision and other modalities
‘‘is a film based on the novel of the same name by’’(X, Y)

But... leads to powerful inference mechanisms and proofs for predictions:
fatherOf(abe,homer). parentOf(homer, lisa). parentOf(homer,bart).
grandfatherOf(X,Y) :– fatherOf(X,Z), parentOf(Z,Y).
grandfatherOf(abe,Q)? {Q/lisa}, {Q/bart}

Fairly easy to debug and trivial to incorporate domain knowledge:
Show to domain expert and let her change/add rules and facts

Tim Rocktäschel End-to-End Differentiable Proving 9/30



Symbolic Representations

Symbols (constants and predicates) do not share any information:
grandpaOf 6= grandfatherOf

No notion of similarity: apple ∼ orange, professorAt ∼ lecturerAt

No generalization beyond what can be symbolically inferred:
isFruit(apple), apple ∼ organge, isFruit(orange)?

Hard to work with language, vision and other modalities
‘‘is a film based on the novel of the same name by’’(X, Y)

But... leads to powerful inference mechanisms and proofs for predictions:
fatherOf(abe,homer). parentOf(homer, lisa). parentOf(homer,bart).
grandfatherOf(X,Y) :– fatherOf(X,Z), parentOf(Z,Y).
grandfatherOf(abe,Q)? {Q/lisa}, {Q/bart}

Fairly easy to debug and trivial to incorporate domain knowledge:
Show to domain expert and let her change/add rules and facts

Tim Rocktäschel End-to-End Differentiable Proving 9/30



Symbolic Representations

Symbols (constants and predicates) do not share any information:
grandpaOf 6= grandfatherOf

No notion of similarity: apple ∼ orange, professorAt ∼ lecturerAt

No generalization beyond what can be symbolically inferred:
isFruit(apple), apple ∼ organge, isFruit(orange)?

Hard to work with language, vision and other modalities
‘‘is a film based on the novel of the same name by’’(X, Y)

But... leads to powerful inference mechanisms and proofs for predictions:
fatherOf(abe,homer). parentOf(homer, lisa). parentOf(homer,bart).
grandfatherOf(X,Y) :– fatherOf(X,Z), parentOf(Z,Y).
grandfatherOf(abe,Q)? {Q/lisa}, {Q/bart}

Fairly easy to debug and trivial to incorporate domain knowledge:
Show to domain expert and let her change/add rules and facts

Tim Rocktäschel End-to-End Differentiable Proving 9/30



Symbolic Representations

Symbols (constants and predicates) do not share any information:
grandpaOf 6= grandfatherOf

No notion of similarity: apple ∼ orange, professorAt ∼ lecturerAt

No generalization beyond what can be symbolically inferred:
isFruit(apple), apple ∼ organge, isFruit(orange)?

Hard to work with language, vision and other modalities
‘‘is a film based on the novel of the same name by’’(X, Y)

But... leads to powerful inference mechanisms and proofs for predictions:
fatherOf(abe,homer). parentOf(homer, lisa). parentOf(homer,bart).
grandfatherOf(X,Y) :– fatherOf(X,Z), parentOf(Z,Y).
grandfatherOf(abe,Q)? {Q/lisa}, {Q/bart}

Fairly easy to debug and trivial to incorporate domain knowledge:
Show to domain expert and let her change/add rules and facts

Tim Rocktäschel End-to-End Differentiable Proving 9/30



Neural Representations

Lower-dimensional fixed-length vector representations of symbols
(predicates and constants):
vapple, vorange, vfatherOf, . . . ∈ Rk

Can capture similarity and even semantic hierarchy of symbols:
vgrandpaOf = vgrandfatherOf,
vapple ∼ vorange, vapple < vfruit

Can be trained from raw task data (e.g. facts in a knowledge base)
Can be compositional
v‘‘is the father of’’ = RNNθ(vis, vthe, vfather, vof)
But... need large amount of training data
No direct way of incorporating prior knowledge
vgrandfatherOf(X,Y) :– vfatherOf(X,Z), vparentOf(Z,Y).

Tim Rocktäschel End-to-End Differentiable Proving 10/30



Neural Representations

Lower-dimensional fixed-length vector representations of symbols
(predicates and constants):
vapple, vorange, vfatherOf, . . . ∈ Rk

Can capture similarity and even semantic hierarchy of symbols:
vgrandpaOf = vgrandfatherOf,
vapple ∼ vorange, vapple < vfruit

Can be trained from raw task data (e.g. facts in a knowledge base)
Can be compositional
v‘‘is the father of’’ = RNNθ(vis, vthe, vfather, vof)
But... need large amount of training data
No direct way of incorporating prior knowledge
vgrandfatherOf(X,Y) :– vfatherOf(X,Z), vparentOf(Z,Y).

Tim Rocktäschel End-to-End Differentiable Proving 10/30



Neural Representations

Lower-dimensional fixed-length vector representations of symbols
(predicates and constants):
vapple, vorange, vfatherOf, . . . ∈ Rk

Can capture similarity and even semantic hierarchy of symbols:
vgrandpaOf = vgrandfatherOf,
vapple ∼ vorange, vapple < vfruit

Can be trained from raw task data (e.g. facts in a knowledge base)

Can be compositional
v‘‘is the father of’’ = RNNθ(vis, vthe, vfather, vof)
But... need large amount of training data
No direct way of incorporating prior knowledge
vgrandfatherOf(X,Y) :– vfatherOf(X,Z), vparentOf(Z,Y).

Tim Rocktäschel End-to-End Differentiable Proving 10/30



Neural Representations

Lower-dimensional fixed-length vector representations of symbols
(predicates and constants):
vapple, vorange, vfatherOf, . . . ∈ Rk

Can capture similarity and even semantic hierarchy of symbols:
vgrandpaOf = vgrandfatherOf,
vapple ∼ vorange, vapple < vfruit

Can be trained from raw task data (e.g. facts in a knowledge base)
Can be compositional
v‘‘is the father of’’ = RNNθ(vis, vthe, vfather, vof)

But... need large amount of training data
No direct way of incorporating prior knowledge
vgrandfatherOf(X,Y) :– vfatherOf(X,Z), vparentOf(Z,Y).

Tim Rocktäschel End-to-End Differentiable Proving 10/30



Neural Representations

Lower-dimensional fixed-length vector representations of symbols
(predicates and constants):
vapple, vorange, vfatherOf, . . . ∈ Rk

Can capture similarity and even semantic hierarchy of symbols:
vgrandpaOf = vgrandfatherOf,
vapple ∼ vorange, vapple < vfruit

Can be trained from raw task data (e.g. facts in a knowledge base)
Can be compositional
v‘‘is the father of’’ = RNNθ(vis, vthe, vfather, vof)
But... need large amount of training data

No direct way of incorporating prior knowledge
vgrandfatherOf(X,Y) :– vfatherOf(X,Z), vparentOf(Z,Y).

Tim Rocktäschel End-to-End Differentiable Proving 10/30



Neural Representations

Lower-dimensional fixed-length vector representations of symbols
(predicates and constants):
vapple, vorange, vfatherOf, . . . ∈ Rk

Can capture similarity and even semantic hierarchy of symbols:
vgrandpaOf = vgrandfatherOf,
vapple ∼ vorange, vapple < vfruit

Can be trained from raw task data (e.g. facts in a knowledge base)
Can be compositional
v‘‘is the father of’’ = RNNθ(vis, vthe, vfather, vof)
But... need large amount of training data
No direct way of incorporating prior knowledge
vgrandfatherOf(X,Y) :– vfatherOf(X,Z), vparentOf(Z,Y).

Tim Rocktäschel End-to-End Differentiable Proving 10/30



State-of-the-art Neural Link Prediction

livesIn(melinda, seattle)? = fθ(vlivesIn, vmelinda, vseattle)

DistMult (Yang et al., 2015)
vs , vi , vj ∈ Rk

fθ(vs , vi , vj) = v>
s (vi � vj)

=
∑

k

vskvikvjk

ComplEx (Trouillon et al., 2016)
vs , vi , vj ∈ Ck

fθ(vs , vi , vj) =

real(vs)>(real(vi )� real(vj))

+ real(vs)>(imag(vi )� imag(vj))

+ imag(vs)>(real(vi )� imag(vj))

− imag(vs)>(imag(vi )� real(vj))Training Loss
L =

∑
rs (ei ,ej ),y ∈ T

−y log (σ(fθ(vs , vi , vj )))− (1− y) log (1− σ(fθ(vs , vi , vj )))

Learn vs , vi , vj from data
Obtain gradients ∇vsL, ∇viL, ∇vjL by backprop

Tim Rocktäschel End-to-End Differentiable Proving 11/30



State-of-the-art Neural Link Prediction

livesIn(melinda, seattle)? = fθ(vlivesIn, vmelinda, vseattle)

DistMult (Yang et al., 2015)
vs , vi , vj ∈ Rk

fθ(vs , vi , vj) = v>
s (vi � vj)

=
∑

k

vskvikvjk

ComplEx (Trouillon et al., 2016)
vs , vi , vj ∈ Ck

fθ(vs , vi , vj) =

real(vs)>(real(vi )� real(vj))

+ real(vs)>(imag(vi )� imag(vj))

+ imag(vs)>(real(vi )� imag(vj))

− imag(vs)>(imag(vi )� real(vj))Training Loss
L =

∑
rs (ei ,ej ),y ∈ T

−y log (σ(fθ(vs , vi , vj )))− (1− y) log (1− σ(fθ(vs , vi , vj )))

Learn vs , vi , vj from data
Obtain gradients ∇vsL, ∇viL, ∇vjL by backprop

Tim Rocktäschel End-to-End Differentiable Proving 11/30



State-of-the-art Neural Link Prediction

livesIn(melinda, seattle)? = fθ(vlivesIn, vmelinda, vseattle)

DistMult (Yang et al., 2015)
vs , vi , vj ∈ Rk

fθ(vs , vi , vj) = v>
s (vi � vj)

=
∑

k

vskvikvjk

ComplEx (Trouillon et al., 2016)
vs , vi , vj ∈ Ck

fθ(vs , vi , vj) =

real(vs)>(real(vi )� real(vj))

+ real(vs)>(imag(vi )� imag(vj))

+ imag(vs)>(real(vi )� imag(vj))

− imag(vs)>(imag(vi )� real(vj))Training Loss
L =

∑
rs (ei ,ej ),y ∈ T

−y log (σ(fθ(vs , vi , vj )))− (1− y) log (1− σ(fθ(vs , vi , vj )))

Learn vs , vi , vj from data
Obtain gradients ∇vsL, ∇viL, ∇vjL by backprop

Tim Rocktäschel End-to-End Differentiable Proving 11/30



State-of-the-art Neural Link Prediction

livesIn(melinda, seattle)? = fθ(vlivesIn, vmelinda, vseattle)

DistMult (Yang et al., 2015)
vs , vi , vj ∈ Rk

fθ(vs , vi , vj) = v>
s (vi � vj)

=
∑

k

vskvikvjk

ComplEx (Trouillon et al., 2016)
vs , vi , vj ∈ Ck

fθ(vs , vi , vj) =

real(vs)>(real(vi )� real(vj))

+ real(vs)>(imag(vi )� imag(vj))

+ imag(vs)>(real(vi )� imag(vj))

− imag(vs)>(imag(vi )� real(vj))Training Loss
L =

∑
rs (ei ,ej ),y ∈ T

−y log (σ(fθ(vs , vi , vj )))− (1− y) log (1− σ(fθ(vs , vi , vj )))

Learn vs , vi , vj from data
Obtain gradients ∇vsL, ∇viL, ∇vjL by backprop

Tim Rocktäschel End-to-End Differentiable Proving 11/30



State-of-the-art Neural Link Prediction

livesIn(melinda, seattle)? = fθ(vlivesIn, vmelinda, vseattle)

DistMult (Yang et al., 2015)
vs , vi , vj ∈ Rk

fθ(vs , vi , vj) = v>
s (vi � vj)

=
∑

k

vskvikvjk

ComplEx (Trouillon et al., 2016)
vs , vi , vj ∈ Ck

fθ(vs , vi , vj) =

real(vs)>(real(vi )� real(vj))

+ real(vs)>(imag(vi )� imag(vj))

+ imag(vs)>(real(vi )� imag(vj))

− imag(vs)>(imag(vi )� real(vj))

Training Loss
L =

∑
rs (ei ,ej ),y ∈ T

−y log (σ(fθ(vs , vi , vj )))− (1− y) log (1− σ(fθ(vs , vi , vj )))

Learn vs , vi , vj from data
Obtain gradients ∇vsL, ∇viL, ∇vjL by backprop

Tim Rocktäschel End-to-End Differentiable Proving 11/30



State-of-the-art Neural Link Prediction

livesIn(melinda, seattle)? = fθ(vlivesIn, vmelinda, vseattle)

DistMult (Yang et al., 2015)
vs , vi , vj ∈ Rk

fθ(vs , vi , vj) = v>
s (vi � vj)

=
∑

k

vskvikvjk

ComplEx (Trouillon et al., 2016)
vs , vi , vj ∈ Ck

fθ(vs , vi , vj) =

real(vs)>(real(vi )� real(vj))

+ real(vs)>(imag(vi )� imag(vj))

+ imag(vs)>(real(vi )� imag(vj))

− imag(vs)>(imag(vi )� real(vj))Training Loss
L =

∑
rs (ei ,ej ),y ∈ T

−y log (σ(fθ(vs , vi , vj )))− (1− y) log (1− σ(fθ(vs , vi , vj )))

Learn vs , vi , vj from data
Obtain gradients ∇vsL, ∇viL, ∇vjL by backprop

Tim Rocktäschel End-to-End Differentiable Proving 11/30



State-of-the-art Neural Link Prediction

livesIn(melinda, seattle)? = fθ(vlivesIn, vmelinda, vseattle)

DistMult (Yang et al., 2015)
vs , vi , vj ∈ Rk

fθ(vs , vi , vj) = v>
s (vi � vj)

=
∑

k

vskvikvjk

ComplEx (Trouillon et al., 2016)
vs , vi , vj ∈ Ck

fθ(vs , vi , vj) =

real(vs)>(real(vi )� real(vj))

+ real(vs)>(imag(vi )� imag(vj))

+ imag(vs)>(real(vi )� imag(vj))

− imag(vs)>(imag(vi )� real(vj))Training Loss
L =

∑
rs (ei ,ej ),y ∈ T

−y log (σ(fθ(vs , vi , vj )))− (1− y) log (1− σ(fθ(vs , vi , vj )))

Learn vs , vi , vj from data

Obtain gradients ∇vsL, ∇viL, ∇vjL by backprop

Tim Rocktäschel End-to-End Differentiable Proving 11/30



State-of-the-art Neural Link Prediction

livesIn(melinda, seattle)? = fθ(vlivesIn, vmelinda, vseattle)

DistMult (Yang et al., 2015)
vs , vi , vj ∈ Rk

fθ(vs , vi , vj) = v>
s (vi � vj)

=
∑

k

vskvikvjk

ComplEx (Trouillon et al., 2016)
vs , vi , vj ∈ Ck

fθ(vs , vi , vj) =

real(vs)>(real(vi )� real(vj))

+ real(vs)>(imag(vi )� imag(vj))

+ imag(vs)>(real(vi )� imag(vj))

− imag(vs)>(imag(vi )� real(vj))Training Loss
L =

∑
rs (ei ,ej ),y ∈ T

−y log (σ(fθ(vs , vi , vj )))− (1− y) log (1− σ(fθ(vs , vi , vj )))

Learn vs , vi , vj from data
Obtain gradients ∇vsL, ∇viL, ∇vjL by backprop

Tim Rocktäschel End-to-End Differentiable Proving 11/30



Regularization by Propositional Logic

JparentOfK Jhomer,bartK JmotherOfK JfatherOfK

u1 u3u2

dot
dot

dot

u4 u5 u6

sigm sigm sigm

Li
nk

P
re

di
ct

or

u7

1− •

u9

∗
u8

• − 1

u10

∗

u11

• + 1

D
iff

er
en

tia
bl

e
Ru

le

loss
−log

Lo
ss

fatherOf(X, Y) :– parentOf(X, Y),¬ motherOf(X, Y)

p(F ) = JF K =



fθ(s, i , j) if F = s(i , j)
1− JAK if F = ¬A
JAK JBK if F = A ∧ B
JAK + JBK− JAK JBK if F = A ∨ B
JBK (JAK− 1) + 1 if F = A :– B

L
(
JfatherOf(homer, bart) :–

parentOf(homer, bart) ∧
¬ motherOf(homer, bart)K

)

L(f) = − log (J∀X,Y : f(X,Y)K) = −
∑

(ei ,ej )∈C2 log Jf(ei , ej )K

Rocktäschel et al. (2015), NAACL 12/30



Regularization by Propositional Logic

JparentOfK Jhomer,bartK JmotherOfK JfatherOfK

u1 u3u2

dot
dot

dot

u4 u5 u6

sigm sigm sigm

Li
nk

P
re

di
ct

or

u7

1− •

u9

∗
u8

• − 1

u10

∗

u11

• + 1

D
iff

er
en

tia
bl

e
Ru

le

loss
−log

Lo
ss

fatherOf(X, Y) :– parentOf(X, Y),¬ motherOf(X, Y)

p(F ) = JF K =



fθ(s, i , j) if F = s(i , j)
1− JAK if F = ¬A
JAK JBK if F = A ∧ B
JAK + JBK− JAK JBK if F = A ∨ B
JBK (JAK− 1) + 1 if F = A :– B

L
(
JfatherOf(homer, bart) :–

parentOf(homer, bart) ∧
¬ motherOf(homer, bart)K

)

L(f) = − log (J∀X,Y : f(X,Y)K) = −
∑

(ei ,ej )∈C2 log Jf(ei , ej )K

Rocktäschel et al. (2015), NAACL 12/30



Regularization by Propositional Logic

JparentOfK Jhomer,bartK JmotherOfK JfatherOfK

u1 u3u2

dot
dot

dot

u4 u5 u6

sigm sigm sigm

Li
nk

P
re

di
ct

or

u7

1− •

u9

∗
u8

• − 1

u10

∗

u11

• + 1

D
iff

er
en

tia
bl

e
Ru

le

loss
−log

Lo
ss

fatherOf(X, Y) :– parentOf(X, Y),¬ motherOf(X, Y)

p(F ) = JF K =



fθ(s, i , j) if F = s(i , j)
1− JAK if F = ¬A
JAK JBK if F = A ∧ B
JAK + JBK− JAK JBK if F = A ∨ B
JBK (JAK− 1) + 1 if F = A :– B

L
(
JfatherOf(homer, bart) :–

parentOf(homer, bart) ∧
¬ motherOf(homer, bart)K

)

L(f) = − log (J∀X,Y : f(X,Y)K) = −
∑

(ei ,ej )∈C2 log Jf(ei , ej )K

Rocktäschel et al. (2015), NAACL 12/30



Regularization by Propositional Logic

JparentOfK Jhomer,bartK JmotherOfK JfatherOfK

u1 u3u2

dot
dot

dot

u4 u5 u6

sigm sigm sigm

Li
nk

P
re

di
ct

or

u7

1− •

u9

∗
u8

• − 1

u10

∗

u11

• + 1

D
iff

er
en

tia
bl

e
Ru

le

loss
−log

Lo
ss

fatherOf(X, Y) :– parentOf(X, Y),¬ motherOf(X, Y)

p(F ) = JF K =



fθ(s, i , j) if F = s(i , j)
1− JAK if F = ¬A
JAK JBK if F = A ∧ B
JAK + JBK− JAK JBK if F = A ∨ B
JBK (JAK− 1) + 1 if F = A :– B

L
(
JfatherOf(homer, bart) :–

parentOf(homer, bart) ∧
¬ motherOf(homer, bart)K

)

L(f) = − log (J∀X,Y : f(X,Y)K) = −
∑

(ei ,ej )∈C2 log Jf(ei , ej )K

Rocktäschel et al. (2015), NAACL 12/30



Regularization by Propositional Logic

JparentOfK Jhomer,bartK JmotherOfK JfatherOfK

u1 u3u2

dot
dot

dot

u4 u5 u6

sigm sigm sigm

Li
nk

P
re

di
ct

or

u7

1− •

u9

∗
u8

• − 1

u10

∗

u11

• + 1

D
iff

er
en

tia
bl

e
Ru

le

loss
−log

Lo
ss

fatherOf(X, Y) :– parentOf(X, Y),¬ motherOf(X, Y)

p(F ) = JF K =



fθ(s, i , j) if F = s(i , j)
1− JAK if F = ¬A
JAK JBK if F = A ∧ B
JAK + JBK− JAK JBK if F = A ∨ B
JBK (JAK− 1) + 1 if F = A :– B

L
(
JfatherOf(homer, bart) :–

parentOf(homer, bart) ∧
¬ motherOf(homer, bart)K

)

L(f) = − log (J∀X,Y : f(X,Y)K) = −
∑

(ei ,ej )∈C2 log Jf(ei , ej )K

Rocktäschel et al. (2015), NAACL 12/30



Regularization by Propositional Logic

JparentOfK Jhomer,bartK JmotherOfK JfatherOfK

u1 u3u2

dot
dot

dot

u4 u5 u6

sigm sigm sigm

Li
nk

P
re

di
ct

or

u7

1− •

u9

∗
u8

• − 1

u10

∗

u11

• + 1

D
iff

er
en

tia
bl

e
Ru

le

loss
−log

Lo
ss

fatherOf(X, Y) :– parentOf(X, Y),¬ motherOf(X, Y)

p(F ) = JF K =



fθ(s, i , j) if F = s(i , j)
1− JAK if F = ¬A
JAK JBK if F = A ∧ B
JAK + JBK− JAK JBK if F = A ∨ B
JBK (JAK− 1) + 1 if F = A :– B

L
(
JfatherOf(homer, bart) :–

parentOf(homer, bart) ∧
¬ motherOf(homer, bart)K

)

L(f) = − log (J∀X,Y : f(X,Y)K) = −
∑

(ei ,ej )∈C2 log Jf(ei , ej )K

Rocktäschel et al. (2015), NAACL 12/30



Zero-shot Learning Results
Neural Link Prediction (LP)

Deduction Deduction after LP
Deduction before LP Regularization

0

20

40

3

10

21

33
38

we
ig

ht
ed

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

Tim Rocktäschel End-to-End Differentiable Proving 13/30



Zero-shot Learning Results
Neural Link Prediction (LP) Deduction

Deduction after LP
Deduction before LP Regularization

0

20

40

3

10

21

33
38

we
ig

ht
ed

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

Tim Rocktäschel End-to-End Differentiable Proving 13/30



Zero-shot Learning Results
Neural Link Prediction (LP) Deduction Deduction after LP

Deduction before LP Regularization

0

20

40

3

10

21

33
38

we
ig

ht
ed

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

Tim Rocktäschel End-to-End Differentiable Proving 13/30



Zero-shot Learning Results
Neural Link Prediction (LP) Deduction Deduction after LP

Deduction before LP

Regularization

0

20

40

3

10

21

33
38

we
ig

ht
ed

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

Tim Rocktäschel End-to-End Differentiable Proving 13/30



Zero-shot Learning Results
Neural Link Prediction (LP) Deduction Deduction after LP

Deduction before LP Regularization

0

20

40

3

10

21

33
38

we
ig

ht
ed

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

Tim Rocktäschel End-to-End Differentiable Proving 13/30



Lifted Regularization by Implications
Every father is a parent

Generalises to similar relations (e.g. dad)

Every mother is a parent

Generalises to similar relations (e.g. mum)
Every parent is a relative

No training facts needed!

Before

mother of

father of

parent of

implied by father of

0

After

father of

mother of

parent of

0

mum of

dad of

relative of

∀X,Y : h(X,Y) :– b(X,Y)
∀(ei , ej ) ∈ C2 : JhK> Jei , ejK ≥ JbK> Jei , ejK
JhK ≥ JbK , ∀(ei , ej ) ∈ C2 : Jei , ejK ∈ Rk

+

Demeester et al. (2016), EMNLP 14/30



Lifted Regularization by Implications
Every father is a parent

Generalises to similar relations (e.g. dad)

Every mother is a parent

Generalises to similar relations (e.g. mum)
Every parent is a relative

No training facts needed!

Before

mother of

father of

parent of

implied by father of

0

After

father of

mother of

parent of

0

mum of

dad of

relative of

∀X,Y : h(X,Y) :– b(X,Y)
∀(ei , ej ) ∈ C2 : JhK> Jei , ejK ≥ JbK> Jei , ejK
JhK ≥ JbK , ∀(ei , ej ) ∈ C2 : Jei , ejK ∈ Rk

+

Demeester et al. (2016), EMNLP 14/30



Lifted Regularization by Implications
Every father is a parent

Generalises to similar relations (e.g. dad)

Every mother is a parent

Generalises to similar relations (e.g. mum)
Every parent is a relative

No training facts needed!

Before

mother of

father of

parent of

implied by father of

0

After

father of

mother of

parent of

0

mum of

dad of

relative of

∀X,Y : h(X,Y) :– b(X,Y)
∀(ei , ej ) ∈ C2 : JhK> Jei , ejK ≥ JbK> Jei , ejK
JhK ≥ JbK , ∀(ei , ej ) ∈ C2 : Jei , ejK ∈ Rk

+

Demeester et al. (2016), EMNLP 14/30



Lifted Regularization by Implications
Every father is a parent

Generalises to similar relations (e.g. dad)

Every mother is a parent

Generalises to similar relations (e.g. mum)
Every parent is a relative

No training facts needed!

Before

mother of

father of

parent of

implied by father of

0

After

father of

mother of

parent of

0

mum of

dad of

relative of

∀X,Y : h(X,Y) :– b(X,Y)
∀(ei , ej ) ∈ C2 : JhK> Jei , ejK ≥ JbK> Jei , ejK
JhK ≥ JbK , ∀(ei , ej ) ∈ C2 : Jei , ejK ∈ Rk

+

Demeester et al. (2016), EMNLP 14/30



Lifted Regularization by Implications
Every father is a parent Generalises to similar relations (e.g. dad)
Every mother is a parent Generalises to similar relations (e.g. mum)

Every parent is a relative

No training facts needed!

Before

mother of

father of

parent of

implied by father of

0

After

father of

mother of

parent of

0

mum of

dad of

relative of

∀X,Y : h(X,Y) :– b(X,Y)
∀(ei , ej ) ∈ C2 : JhK> Jei , ejK ≥ JbK> Jei , ejK
JhK ≥ JbK , ∀(ei , ej ) ∈ C2 : Jei , ejK ∈ Rk

+

Demeester et al. (2016), EMNLP 14/30



Lifted Regularization by Implications
Every father is a parent Generalises to similar relations (e.g. dad)
Every mother is a parent Generalises to similar relations (e.g. mum)
Every parent is a relative No training facts needed!

Before

mother of

father of

parent of

implied by father of

0

After

father of

mother of

parent of

0

mum of

dad of

relative of

∀X,Y : h(X,Y) :– b(X,Y)
∀(ei , ej ) ∈ C2 : JhK> Jei , ejK ≥ JbK> Jei , ejK
JhK ≥ JbK , ∀(ei , ej ) ∈ C2 : Jei , ejK ∈ Rk

+

Demeester et al. (2016), EMNLP 14/30



Lifted Regularization by Implications
Every father is a parent Generalises to similar relations (e.g. dad)
Every mother is a parent Generalises to similar relations (e.g. mum)
Every parent is a relative No training facts needed!

Before

mother of

father of

parent of

implied by father of

0

After

father of

mother of

parent of

0

mum of

dad of

relative of

∀X,Y : h(X,Y) :– b(X,Y)
∀(ei , ej ) ∈ C2 : JhK> Jei , ejK ≥ JbK> Jei , ejK
JhK ≥ JbK , ∀(ei , ej ) ∈ C2 : Jei , ejK ∈ Rk

+

Demeester et al. (2016), EMNLP 14/30



Adversarial Regularization

x y x z z y

yx z

Adversary

Clause A: h(X,Y) :– b1(X,Z) ∧ b2(Z,Y)

Link Predictor Link Predictor Link Predictor

φh(x, y) φb1(x, z) φb2(z, y)

JI [φh(x, y) :– φb1(x, z) ∧ φb2(z, y)]

Inconsistency Loss

Adversarial Set S

Regularization by propositional rules needs
grounding – does not scale to large
domains!

Lifted regularization only supports direct
implications
Idea: let grounding be generated by an
adversary and optimize minimax game...
Adversary finds maximally violating
grounding for a given rule
Neural link predictor attempts to minimize
rule violation for given generated
groundings

Minervini et al. (2017), UAI 14/30



Adversarial Regularization

x y x z z y

yx z

Adversary

Clause A: h(X,Y) :– b1(X,Z) ∧ b2(Z,Y)

Link Predictor Link Predictor Link Predictor

φh(x, y) φb1(x, z) φb2(z, y)

JI [φh(x, y) :– φb1(x, z) ∧ φb2(z, y)]

Inconsistency Loss

Adversarial Set S

Regularization by propositional rules needs
grounding – does not scale to large
domains!
Lifted regularization only supports direct
implications

Idea: let grounding be generated by an
adversary and optimize minimax game...
Adversary finds maximally violating
grounding for a given rule
Neural link predictor attempts to minimize
rule violation for given generated
groundings

Minervini et al. (2017), UAI 14/30



Adversarial Regularization

x y x z z y

yx z

Adversary

Clause A: h(X,Y) :– b1(X,Z) ∧ b2(Z,Y)

Link Predictor Link Predictor Link Predictor

φh(x, y) φb1(x, z) φb2(z, y)

JI [φh(x, y) :– φb1(x, z) ∧ φb2(z, y)]

Inconsistency Loss

Adversarial Set S

Regularization by propositional rules needs
grounding – does not scale to large
domains!
Lifted regularization only supports direct
implications
Idea: let grounding be generated by an
adversary and optimize minimax game...

Adversary finds maximally violating
grounding for a given rule
Neural link predictor attempts to minimize
rule violation for given generated
groundings

Minervini et al. (2017), UAI 14/30



Adversarial Regularization

x y x z z y

yx z

Adversary

Clause A: h(X,Y) :– b1(X,Z) ∧ b2(Z,Y)

Link Predictor Link Predictor Link Predictor

φh(x, y) φb1(x, z) φb2(z, y)

JI [φh(x, y) :– φb1(x, z) ∧ φb2(z, y)]

Inconsistency Loss

Adversarial Set S

Regularization by propositional rules needs
grounding – does not scale to large
domains!
Lifted regularization only supports direct
implications
Idea: let grounding be generated by an
adversary and optimize minimax game...
Adversary finds maximally violating
grounding for a given rule

Neural link predictor attempts to minimize
rule violation for given generated
groundings

Minervini et al. (2017), UAI 14/30



Adversarial Regularization

x y x z z y

yx z

Adversary

Clause A: h(X,Y) :– b1(X,Z) ∧ b2(Z,Y)

Link Predictor Link Predictor Link Predictor

φh(x, y) φb1(x, z) φb2(z, y)

JI [φh(x, y) :– φb1(x, z) ∧ φb2(z, y)]

Inconsistency Loss

Adversarial Set S

Regularization by propositional rules needs
grounding – does not scale to large
domains!
Lifted regularization only supports direct
implications
Idea: let grounding be generated by an
adversary and optimize minimax game...
Adversary finds maximally violating
grounding for a given rule
Neural link predictor attempts to minimize
rule violation for given generated
groundings

Minervini et al. (2017), UAI 14/30



End-to-End Differentiable Prover

Neural network for proving queries to a knowledge base

Proof success differentiable w.r.t. vector representations of symbols
Learn vector representations of symbols end-to-end from proof success
Make use of provided rules in soft proofs
Induce interpretable rules end-to-end from proof success

Rocktäschel and Riedel (2017), NIPS 15/30



End-to-End Differentiable Prover

Neural network for proving queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols

Learn vector representations of symbols end-to-end from proof success
Make use of provided rules in soft proofs
Induce interpretable rules end-to-end from proof success

Rocktäschel and Riedel (2017), NIPS 15/30



End-to-End Differentiable Prover

Neural network for proving queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Learn vector representations of symbols end-to-end from proof success

Make use of provided rules in soft proofs
Induce interpretable rules end-to-end from proof success

Rocktäschel and Riedel (2017), NIPS 15/30



End-to-End Differentiable Prover

Neural network for proving queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Learn vector representations of symbols end-to-end from proof success
Make use of provided rules in soft proofs

Induce interpretable rules end-to-end from proof success

Rocktäschel and Riedel (2017), NIPS 15/30



End-to-End Differentiable Prover

Neural network for proving queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Learn vector representations of symbols end-to-end from proof success
Make use of provided rules in soft proofs
Induce interpretable rules end-to-end from proof success

Rocktäschel and Riedel (2017), NIPS 15/30



Approach

Let’s neuralize Prolog’s Backward Chaining using a Radial Basis Function
kernel for unifying vector representations of symbols!

Tim Rocktäschel End-to-End Differentiable Proving 16/30



Approach

Let’s neuralize Prolog’s Backward Chaining using a Radial Basis Function
kernel for unifying vector representations of symbols!

Tim Rocktäschel End-to-End Differentiable Proving 16/30



Approach

Let’s neuralize Prolog’s Backward Chaining using a Radial Basis Function
kernel for unifying vector representations of symbols!

Tim Rocktäschel End-to-End Differentiable Proving 16/30



Prolog’s Backward Chaining

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Intuition:

Backward chaining translates a query into subqueries via rules, e.g.,
grandfatherOf(abe,bart) 3. fatherOf(abe,Z), parentOf(Z,bart)
It attempts this for all rules in the knowledge base and thus specifies a
depth-first search

Tim Rocktäschel End-to-End Differentiable Proving 17/30



Prolog’s Backward Chaining

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Intuition:
Backward chaining translates a query into subqueries via rules, e.g.,
grandfatherOf(abe,bart) 3. fatherOf(abe,Z), parentOf(Z,bart)

It attempts this for all rules in the knowledge base and thus specifies a
depth-first search

Tim Rocktäschel End-to-End Differentiable Proving 17/30



Prolog’s Backward Chaining

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Intuition:
Backward chaining translates a query into subqueries via rules, e.g.,
grandfatherOf(abe,bart) 3. fatherOf(abe,Z), parentOf(Z,bart)
It attempts this for all rules in the knowledge base and thus specifies a
depth-first search

Tim Rocktäschel End-to-End Differentiable Proving 17/30



Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=
State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=
State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=

State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=

State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=
State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=
State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=
State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart
grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bart

FAIL X/abe Y/bartX/abe Y/bart

?= ?= ?=
State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Unification Failure

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y). Query

Query

grandfatherOf abe bart

grandpaOf abe bart

grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3. grandfatherOf X Y

SUCCESS X/abe Y/bart

FAIL X/abe Y/bart

X/abe Y/bart

?= ?= ?=
State t

∅ SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Neural Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Query

Query

grandfatherOf abe bartgrandpaOf abe bart

grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3.

grandfatherOf

X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bart

X/abe Y/bart

?= ?= ?=
State t

∅

SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Neural Unification

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Query

Query

grandfatherOf abe bartgrandpaOf abe bart

grandpaOf abe bart

1. fatherOf abe homer

FAIL SUCCESS FAIL

2. parentOf homer bart

FAIL FAIL SUCCESS

3.

grandfatherOf

X Y

SUCCESS X/abe Y/bartFAIL X/abe Y/bart

X/abe Y/bart

?= ?= ?=
State t

∅

SUCCESS

1.0

State t + 1

∅ FAIL

State t + 1

∅ FAIL

State t + 1

X/abe
Y/bart SUCCESS

State t + 1

X/abe
Y/bart FAIL

State t + 1

X/abe
Y/bart

min
(

1.0, exp
(−‖vgrandpaOf−vgrandfatherOf‖2

2µ2

))

Tim Rocktäschel End-to-End Differentiable Proving 18/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.

X/abe
Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.

X/abe
Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.

X/abe
Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Differentiable Prover
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Neural Program Induction
Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2

abe
Z

X/abe
Y/bart

Z/homer
3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3

homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3

bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Neural Program Induction

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. grandfatherOf(X,Y) :–

fatherOf(X,Z),
parentOf(Z,Y).

Example Knowledge Base:
1. fatherOf(abe,homer).
2. parentOf(homer,bart).
3. θ1(X,Y) :–

θ2(X,Z),
θ3(Z,Y).

∅ 1.0
grandpaOf abe bart

∅
1.

∅

2.

X/abe
Y/bart

3.

3.1 fatherOf(X,Z)
3.2 parentOf(Z,Y)

3.1 θ2(X,Z)
3.2 θ3(Z,Y)

fatherOf

θ2 abe
Z

X/abe
Y/bart

Z/homer

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

1.
X/abe

Y/bart
Z/bart

3.2 parentOf(Z,Y)

3.2 θ3(Z,Y)

2.

FAIL

3.

parentOf

θ3 homer bart

X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer
FAIL

1.
3.

2.

parentOf

θ3 bart bart

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

FAIL

1.
3.

2.

Tim Rocktäschel End-to-End Differentiable Proving 19/30



Training Objective
grandpaOf abe bart

∅ ∅ X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

1. 1.

3.
1.

1.

3.
1.

2.

3.
2.

1.

3.
2.

2.

fθ(grandpaOf(abe, bart))

max pooling

Loss: negative log-likelihood w.r.t. target proof success

Trained end-to-end using stochastic gradient descent
Vectors are learned such that proof success is high for known facts and
low for sampled negative facts

Tim Rocktäschel End-to-End Differentiable Proving 20/30



Training Objective
grandpaOf abe bart

∅ ∅ X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

1. 1.

3.
1.

1.

3.
1.

2.

3.
2.

1.

3.
2.

2.

fθ(grandpaOf(abe, bart))

max pooling

Loss: negative log-likelihood w.r.t. target proof success

Trained end-to-end using stochastic gradient descent
Vectors are learned such that proof success is high for known facts and
low for sampled negative facts

Tim Rocktäschel End-to-End Differentiable Proving 20/30



Training Objective
grandpaOf abe bart

∅ ∅ X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

1. 1.

3.
1.

1.

3.
1.

2.

3.
2.

1.

3.
2.

2.

fθ(grandpaOf(abe, bart))

max pooling

Loss: negative log-likelihood w.r.t. target proof success

Trained end-to-end using stochastic gradient descent
Vectors are learned such that proof success is high for known facts and
low for sampled negative facts

Tim Rocktäschel End-to-End Differentiable Proving 20/30



Training Objective
grandpaOf abe bart

∅ ∅ X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

1. 1.

3.
1.

1.

3.
1.

2.

3.
2.

1.

3.
2.

2.

fθ(grandpaOf(abe, bart))

max pooling

Loss: negative log-likelihood w.r.t. target proof success
Trained end-to-end using stochastic gradient descent

Vectors are learned such that proof success is high for known facts and
low for sampled negative facts

Tim Rocktäschel End-to-End Differentiable Proving 20/30



Training Objective
grandpaOf abe bart

∅ ∅ X/abe
Y/bart

Z/homer

X/abe
Y/bart

Z/homer

X/abe
Y/bart
Z/bart

X/abe
Y/bart
Z/bart

1. 1.

3.
1.

1.

3.
1.

2.

3.
2.

1.

3.
2.

2.

fθ(grandpaOf(abe, bart))

max pooling

Loss: negative log-likelihood w.r.t. target proof success
Trained end-to-end using stochastic gradient descent
Vectors are learned such that proof success is high for known facts and
low for sampled negative facts

Tim Rocktäschel End-to-End Differentiable Proving 20/30



Calculation on GPU

Q

Q /

parentOf

dadOf

homer

abe

fatherOf

parentOf

grandmaOf

abe

homer

mona

homer

bart

lisa

homer

bart

lisa

homer

bart

lisa

unify

unify

unify
(symbolic)

Tim Rocktäschel End-to-End Differentiable Proving 21/30



Calculation on GPU

Q

Q /

parentOf

dadOf

homer

abe

fatherOf

parentOf

grandmaOf

abe

homer

mona

homer

bart

lisa

homer

bart

lisa

homer

bart

lisa

unify

unify

unify
(symbolic)

Tim Rocktäschel End-to-End Differentiable Proving 21/30



Calculation on GPU

Q

Q /

parentOf

dadOf

homer

abe

fatherOf

parentOf

grandmaOf

abe

homer

mona

homer

bart

lisa

homer

bart

lisa

homer

bart

lisa

unify

unify

unify
(symbolic)

Tim Rocktäschel End-to-End Differentiable Proving 21/30



Calculation on GPU

Q

Q /

parentOf

dadOf

homer

abe

fatherOf

parentOf

grandmaOf

abe

homer

mona

homer

bart

lisa

homer

bart

lisa

homer

bart

lisa

unify

unify

unify
(symbolic)

Tim Rocktäschel End-to-End Differentiable Proving 21/30



Calculation on GPU

Q

Q /

parentOf

dadOf

homer

abe

fatherOf

parentOf

grandmaOf

abe

homer

mona

homer

bart

lisa

homer

bart

lisa

homer

bart

lisa

unify

unify

unify
(symbolic)

Tim Rocktäschel End-to-End Differentiable Proving 21/30



Experiments

Benchmark Knowledge Bases: Kinship, Nations, UMLS (Kok and Domingos,
2007), and Countries (Bouchard et al., 2015)

Test Country

Train Country

Region

Subregion

neighborOf

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

Test Country

Train Country

Region

Subregion

neighborOf

locatedIn

locatedIn

locatedIn

locatedIn

Tim Rocktäschel End-to-End Differentiable Proving 22/30



Experiments

Benchmark Knowledge Bases: Kinship, Nations, UMLS (Kok and Domingos,
2007), and Countries (Bouchard et al., 2015)

Test Country

Train Country

Region

Subregion

neighborOf

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

Test Country

Train Country

Region

Subregion

neighborOf

locatedIn

locatedIn

locatedIn

locatedIn

Tim Rocktäschel End-to-End Differentiable Proving 22/30



Experiments

Benchmark Knowledge Bases: Kinship, Nations, UMLS (Kok and Domingos,
2007), and Countries (Bouchard et al., 2015)

Test Country

Train Country

Region

Subregion

neighborOf

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

Test Country

Train Country

Region

Subregion

neighborOf

locatedIn

locatedIn

locatedIn

locatedIn

Tim Rocktäschel End-to-End Differentiable Proving 22/30



Experiments

Benchmark Knowledge Bases: Kinship, Nations, UMLS (Kok and Domingos,
2007), and Countries (Bouchard et al., 2015)

Test Country

Train Country

Region

Subregion

neighborOf

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

locatedIn

Test Country

Train Country

Region

Subregion

neighborOf

locatedIn

locatedIn

locatedIn

locatedIn

Tim Rocktäschel End-to-End Differentiable Proving 22/30



Details

Models implemented in TensorFlow

ComplEx Neural link prediction model by Trouillon et al. (2016)
Prover End-to-end differentiable prover

Proverλ Same, but representations trained with ComplEx as auxiliary task
Rule Templates:
Kinship, Nations & UMLS
20 #1(X,Y) :– #2(X,Y).
20 #1(X,Y) :– #2(Y,X).
20 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S1
3 #1(X,Y) :– #1(Y,X).
3 #1(X,Y) :– #2(X,Z),#2(Z,Y).
Countries S2
3 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S3
3 #1(X,Y) :– #2(X,Z),#3(Z,W),#4(W,Y).

Tim Rocktäschel End-to-End Differentiable Proving 23/30



Details

Models implemented in TensorFlow
ComplEx Neural link prediction model by Trouillon et al. (2016)

Prover End-to-end differentiable prover
Proverλ Same, but representations trained with ComplEx as auxiliary task

Rule Templates:
Kinship, Nations & UMLS
20 #1(X,Y) :– #2(X,Y).
20 #1(X,Y) :– #2(Y,X).
20 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S1
3 #1(X,Y) :– #1(Y,X).
3 #1(X,Y) :– #2(X,Z),#2(Z,Y).
Countries S2
3 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S3
3 #1(X,Y) :– #2(X,Z),#3(Z,W),#4(W,Y).

Tim Rocktäschel End-to-End Differentiable Proving 23/30



Details

Models implemented in TensorFlow
ComplEx Neural link prediction model by Trouillon et al. (2016)

Prover End-to-end differentiable prover

Proverλ Same, but representations trained with ComplEx as auxiliary task
Rule Templates:
Kinship, Nations & UMLS
20 #1(X,Y) :– #2(X,Y).
20 #1(X,Y) :– #2(Y,X).
20 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S1
3 #1(X,Y) :– #1(Y,X).
3 #1(X,Y) :– #2(X,Z),#2(Z,Y).
Countries S2
3 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S3
3 #1(X,Y) :– #2(X,Z),#3(Z,W),#4(W,Y).

Tim Rocktäschel End-to-End Differentiable Proving 23/30



Details

Models implemented in TensorFlow
ComplEx Neural link prediction model by Trouillon et al. (2016)

Prover End-to-end differentiable prover
Proverλ Same, but representations trained with ComplEx as auxiliary task

Rule Templates:
Kinship, Nations & UMLS
20 #1(X,Y) :– #2(X,Y).
20 #1(X,Y) :– #2(Y,X).
20 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S1
3 #1(X,Y) :– #1(Y,X).
3 #1(X,Y) :– #2(X,Z),#2(Z,Y).
Countries S2
3 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S3
3 #1(X,Y) :– #2(X,Z),#3(Z,W),#4(W,Y).

Tim Rocktäschel End-to-End Differentiable Proving 23/30



Details

Models implemented in TensorFlow
ComplEx Neural link prediction model by Trouillon et al. (2016)

Prover End-to-end differentiable prover
Proverλ Same, but representations trained with ComplEx as auxiliary task

Rule Templates:
Kinship, Nations & UMLS
20 #1(X,Y) :– #2(X,Y).
20 #1(X,Y) :– #2(Y,X).
20 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S1
3 #1(X,Y) :– #1(Y,X).
3 #1(X,Y) :– #2(X,Z),#2(Z,Y).
Countries S2
3 #1(X,Y) :– #2(X,Z),#3(Z,Y).
Countries S3
3 #1(X,Y) :– #2(X,Z),#3(Z,W),#4(W,Y).

Tim Rocktäschel End-to-End Differentiable Proving 23/30



Tim Rocktäschel End-to-End Differentiable Proving 24/30



Results

ComplEx

Prover Proverλ

Countries S3 Kinship Nations UMLS
0

20

40

60

80

100

48

70
62

82

57
48

62

8277 76

59

87

Ac
cu

ra
cy

/
H

IT
S@

1

Tim Rocktäschel End-to-End Differentiable Proving 25/30



Results

ComplEx Prover

Proverλ

Countries S3 Kinship Nations UMLS
0

20

40

60

80

100

48

70
62

82

57
48

62

8277 76

59

87

Ac
cu

ra
cy

/
H

IT
S@

1

Tim Rocktäschel End-to-End Differentiable Proving 25/30



Results

ComplEx Prover Proverλ

Countries S3 Kinship Nations UMLS
0

20

40

60

80

100

48

70
62

82

57
48

62

8277 76

59

87

Ac
cu

ra
cy

/
H

IT
S@

1

Tim Rocktäschel End-to-End Differentiable Proving 25/30



Examples of Induced Rules

Corpus Induced rules and their confidence

Countries
S1 0.90 locatedIn(X,Y) :– locatedIn(X,Z), locatedIn(Z,Y).
S2 0.63 locatedIn(X,Y) :– neighborOf(X,Z), locatedIn(Z,Y).
S3 0.32 locatedIn(X,Y) :– neighborOf(X,Z), neighborOf(Z,W), locatedIn(W,Y).

Nations

0.68 blockpositionindex(X,Y) :– blockpositionindex(Y,X).
0.46 expeldiplomats(X,Y) :– negativebehavior(X,Y).
0.38 negativecomm(X,Y) :– commonbloc0(X,Y).
0.38 intergovorgs3(X,Y) :– intergovorgs(Y,X).

UMLS
0.88 interacts with(X,Y) :– interacts with(X,Z), interacts with(Z,Y).
0.77 isa(X,Y) :– isa(X,Z), isa(Z,Y).
0.71 derivative of(X,Y) :– derivative of(X,Z), derivative of(Z,Y).

Tim Rocktäschel End-to-End Differentiable Proving 26/30



Outlook

Structured Data

Databases

Explanations

Teacher

Text

Text

Publications
User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?Structured Data

Explanations
Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication

Tim Rocktäschel End-to-End Differentiable Proving 27/30



Outlook

Structured Data

Databases

Explanations

Teacher

Text

Text

Publications

User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Structured Data

Explanations
Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication

Tim Rocktäschel End-to-End Differentiable Proving 27/30



Outlook

Structured Data

Databases

Explanations

Teacher

Text

Text

Publications

User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Structured Data

Explanations
Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication

Tim Rocktäschel End-to-End Differentiable Proving 27/30



Outlook

Structured Data

Databases

Explanations

Teacher

Text

Text

Publications

User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Structured Data

Explanations

Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication

Tim Rocktäschel End-to-End Differentiable Proving 27/30



Outlook

Structured Data

Databases

Explanations

Teacher

TextText

Publications
User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Structured Data

Explanations

Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication

Tim Rocktäschel End-to-End Differentiable Proving 27/30



Outlook

Structured Data

Databases

Explanations

Teacher

TextText

Publications
User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Structured Data

Explanations

Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication

Tim Rocktäschel End-to-End Differentiable Proving 27/30



Outlook

Structured Data

Databases

Explanations

Teacher

Text

Text

Publications
User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?Structured Data

Explanations

Answer
Morphine intoxication

Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication

Tim Rocktäschel End-to-End Differentiable Proving 27/30



Outlook

Structured Data

Databases

Explanations

Teacher

Text

Text

Publications
User

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?

Question
My patient is not responding after
three days of codeine treatment.
What could have happened?Structured Data

Explanations

Answer
Morphine intoxication
Proof
- Codeine is metabolized to morphine
- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication

Tim Rocktäschel End-to-End Differentiable Proving 27/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules

We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base

Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols

Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification

Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent

Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent

Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.

Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases

Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Summary

We proposed various ways of regularizing vector representations of
symbols using rules
We used Prolog’s backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification
Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent
Various computational optimizations: batch proving, tree pruning etc.
Future research:

Scaling up to larger knowledge bases
Connecting to RNNs for proving with natural language statements

Tim Rocktäschel End-to-End Differentiable Proving 28/30



Thank you!

http://rockt.github.com
tim.rocktaschel@cs.ox.ac.uk
Twitter: @ rockt

http://rockt.github.com
tim.rocktaschel@cs.ox.ac.uk
https://twitter.com/_rockt


References I

T. R. Besold, A. S. d’Avila Garcez, S. Bader, H. Bowman, P. M. Domingos, P. Hitzler, K. Kühnberger, L. C. Lamb, D. Lowd, P. M. V.
Lima, L. de Penning, G. Pinkas, H. Poon, and G. Zaverucha. Neural-symbolic learning and reasoning: A survey and interpretation.
CoRR, abs/1711.03902, 2017. URL http://arxiv.org/abs/1711.03902.

G. Bouchard, S. Singh, and T. Trouillon. On approximate reasoning capabilities of low-rank vector spaces. In Proceedings of the 2015
AAAI Spring Symposium on Knowledge Representation and Reasoning (KRR): Integrating Symbolic and Neural Approaches, 2015.

W. W. Cohen. Tensorlog: A differentiable deductive database. CoRR, abs/1605.06523, 2016. URL http://arxiv.org/abs/1605.06523.
R. Das, A. Neelakantan, D. Belanger, and A. McCallum. Chains of reasoning over entities, relations, and text using recurrent neural

networks. In Conference of the European Chapter of the Association for Computational Linguistics (EACL), 2017. URL
http://arxiv.org/abs/1607.01426.

A. S. d’Avila Garcez and G. Zaverucha. The connectionist inductive learning and logic programming system. Appl. Intell., 11(1):59–77,
1999. doi: 10.1023/A:1008328630915. URL http://dx.doi.org/10.1023/A:1008328630915.

A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-symbolic learning systems: foundations and applications. Springer Science &
Business Media, 2012.

T. Demeester, T. Rocktäschel, and S. Riedel. Lifted rule injection for relation embeddings. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 1389–1399, 2016.
URL http://aclweb.org/anthology/D/D16/D16-1146.pdf.

L. Ding. Neural prolog-the concepts, construction and mechanism. In Systems, Man and Cybernetics, 1995. Intelligent Systems for the
21st Century., IEEE International Conference on, volume 4, pages 3603–3608. IEEE, 1995.

R. Evans and E. Grefenstette. Learning explanatory rules from noisy data. CoRR, abs/1711.04574, 2017. URL
http://arxiv.org/abs/1711.04574.

S. Hölldobler. A structured connectionist unification algorithm. In Proceedings of the 8th National Conference on Artificial Intelligence.
Boston, Massachusetts, July 29 - August 3, 1990, 2 Volumes., pages 587–593, 1990. URL
http://www.aaai.org/Library/AAAI/1990/aaai90-088.php.

http://arxiv.org/abs/1711.03902
http://arxiv.org/abs/1605.06523
http://arxiv.org/abs/1607.01426
http://dx.doi.org/10.1023/A:1008328630915
http://aclweb.org/anthology/D/D16/D16-1146.pdf
http://arxiv.org/abs/1711.04574
http://www.aaai.org/Library/AAAI/1990/aaai90-088.php


References II

S. Kok and P. M. Domingos. Statistical predicate invention. In Machine Learning, Proceedings of the Twenty-Fourth International
Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007, pages 433–440, 2007. doi: 10.1145/1273496.1273551. URL
http://doi.acm.org/10.1145/1273496.1273551.

E. Komendantskaya. Unification neural networks: unification by error-correction learning. Logic Journal of the IGPL, 19(6):821–847, 2011.
doi: 10.1093/jigpal/jzq012. URL http://dx.doi.org/10.1093/jigpal/jzq012.

P. Minervini, T. Demeester, T. Rocktäschel, and S. Riedel. Adversarial sets for regularised neural link predictors. In Proceedings of the
33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

T. Rocktäschel and S. Riedel. End-to-end differentiable proving. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 3791–3803, 2017.
URL http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving.

T. Rocktäschel, S. Singh, and S. Riedel. Injecting logical background knowledge into embeddings for relation extraction. In NAACL HLT
2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Denver, Colorado, USA, May 31 - June 5, 2015, pages 1119–1129, 2015. URL
http://aclweb.org/anthology/N/N15/N15-1118.pdf.

L. Serafini and A. S. d’Avila Garcez. Logic tensor networks: Deep learning and logical reasoning from data and knowledge. In Proceedings
of the 11th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy’16) co-located with the Joint Multi-Conference
on Human-Level Artificial Intelligence (HLAI 2016), New York City, NY, USA, July 16-17, 2016., 2016. URL
http://ceur-ws.org/Vol-1768/NESY16_paper3.pdf.

L. Shastri. Neurally motivated constraints on the working memory capacity of a production system for parallel processing: Implications of a
connectionist model based on temporal synchrony. In Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society: July 29 to August 1, 1992, Cognitive Science Program, Indiana University, Bloomington, volume 14, page 159. Psychology
Press, 1992.

J. W. Shavlik and G. G. Towell. An approach to combining explanation-based and neural learning algorithms. Connection Science, 1(3):
231–253, 1989.

http://doi.acm.org/10.1145/1273496.1273551
http://dx.doi.org/10.1093/jigpal/jzq012
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving
http://aclweb.org/anthology/N/N15/N15-1118.pdf
http://ceur-ws.org/Vol-1768/NESY16_paper3.pdf


References III

G. Sourek, V. Aschenbrenner, F. Zelezný, and O. Kuzelka. Lifted relational neural networks. In Proceedings of the NIPS Workshop on
Cognitive Computation: Integrating Neural and Symbolic Approaches co-located with the 29th Annual Conference on Neural
Information Processing Systems (NIPS 2015), Montreal, Canada, December 11-12, 2015., 2015. URL
http://ceur-ws.org/Vol-1583/CoCoNIPS_2015_paper_7.pdf.

G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Artif. Intell., 70(1-2):119–165, 1994. doi:
10.1016/0004-3702(94)90105-8. URL http://dx.doi.org/10.1016/0004-3702(94)90105-8.

T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex embeddings for simple link prediction. In Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2071–2080, 2016.
URL http://jmlr.org/proceedings/papers/v48/trouillon16.html.

B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations for learning and inference in knowledge bases. In
International Conference on Learning Representations (ICLR), 2015. URL http://arxiv.org/abs/1412.6575.

http://ceur-ws.org/Vol-1583/CoCoNIPS_2015_paper_7.pdf
http://dx.doi.org/10.1016/0004-3702(94)90105-8
http://jmlr.org/proceedings/papers/v48/trouillon16.html
http://arxiv.org/abs/1412.6575

