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What vegetable is on the
plate?

Neural Net:

Ground Truth: broccoli

What color are the shoes
on the person's feet ?
Neural Net: br 1

Ground Truth: brown

How many school busses
are there?

Neural Net: 2

Ground Truth: 2

What sport is this?
Neural Net: baseball
Ground Truth: baseball

What is on top of the
refrigerator?

Neural Net: magnets
Ground Truth: cereal

What uniform is she
wearing?

Neural Net: shorts
Ground Truth: girl scout

What is the table
number?

Neural Net: 4
Ground Truth:40

What are people sitting
under in the back?
Neural Net: bench
Ground Truth: tent
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Translate from GERMAN (detected) v

Die Polizei in den USA darf sich wieder schwere Ausriistung und
Waffen beim Militar besorgen. Das hat US-Prasident Donald
Trump entschieden und so eine Anordnung seines Vorgangers
Barack Obama aufgehoben, nach der es dem
Verteidigungsministerium verboten war, die Polizei mit
Granatwerfern, gepanzerten Fahrzeugen, Bajonetten,
groftkalibrigen Waffen und Munition auszuriisten.

Mit der MalRnahme soll sichergestellt werden, dass die Polizei die
lebensrettende Ausriistung bekomme, die sie brauche, um ihren
Job zu machen, sagte US-Justizminister Jeff Sessions.

Translate into ENGLISH v

The police in the USA are allowed to get heavy equipment and
weapons from the military again. This was decided by US
President Donald Trump, who averturned an order from his
predecessor Barack Obama, according to which the Department
of Defense was hanned from equipping the police with grenade
launchers, armoured vehicles, bayonets, large-calibre weapons
and ammunition.

The measure is designed to ensure that the police get the life-
saving equipment they need to do their job, US Attorney General
Jeff Sessions said.
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THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YoU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE CTHER SIDE.

WHAT IF THE ANSWERS ARE LRONG? J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

XKCD, 17th May 2017
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THIS 15 YOUR MACHINE LEARNING SYSTETM?
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Data & PILE OF LINEAR ALGEBRA, THEN COLLECT
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Explanations
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e Rules
; JUST STIR THE PILE UNTIL
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Data Efficiency & Model Interpretability
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Lecture Notes

CENTER FOR THE STUDY
OF LANGUAGE
e



goal problem.

rule 1
if not turn_over and
battery_bad
then problem is battery

rule 2
if lights_weak
then battery bad cf 50.

rule 3
if radio_weak
then battery bad cf 50.

rule 4
if turn_over and
smell gas

then problem is flooded

rule 5
if turn_over and
gas_gauge is empty

cf 100.

cf 80.

then problem is out_of_gas cf 90.

rule 6
if turn_over and
gas_gauge is low

then problem is out_of_gas cf 30.
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goal problem.

rule 1
if not turn_over and
battery_bad
then problem is battery cf 100.

rule 2
if lights_weak
then battery bad cf 50.

rule 3
if radio_weak
then battery bad cf 50.

rule 4
if turn_over and
smell gas

then problem is flooded cf 80.

rule 5
if turn_over and
gas_gauge is empty
then problem is out_of_gas cf 90.

rule 6
if turn_over and
gas_gauge is low
then problem is out_of_gas cf 30.

Expert Systems
e No/little training data
e Interpretable
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rule 1
if not turn_over and
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rule 3
if radio_weak
then battery bad cf 50.

rule 4
if turn_over and
smell gas
then problem is flooded cf 80.

rule 5
if turn_over and
gas_gauge is empty
then problem is out_of_gas cf 90.

rule 6
if turn_over and
gas_gauge is low
then problem is out_of_gas cf 30.

Expert Systems Neural Networks
e No/little training data
e Interpretable

e Rules manually defined e Trained end-to-end

e No generalization e Strong generalization

L



goal problem.

i

rule 1
if not turn_over and
battery bad

then problem is battery cf 100.
rule 2 ' Lecture Notes
if lights_weak

then battery bad cf 50.

i

B
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rule 3
if radio_weak
then battery bad cf 50.

rule 4
if turn_over and
smell gas
then problem is flooded cf 80.

rule 5
if turn_over and
gas_gauge is empty
then problem is out_of_gas cf 90.

rule 6
if turn_over and
gas_gauge is low
then problem is out_of_gas cf 30.

Expert Systems Neural Networks

e No/little training data e Need a lot of training data
e Interpretable e Not interpretable

e Rules manually defined e Trained end-to-end

e No generalization e Strong generalization




goal problem.

rule 1
if not turn_over and
battery bad
then problem is battery cf 100.

rule 2
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Neural Networks

e Trained end-to-end
e Strong generalization
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Machine Learning & Logic

m Fuzzy Logic (Zadeh, 1965)
m Probabilistic Logic Programming, e.g.,

m |BAL (Pfeffer, 2001), BLOG (Milch et al., 2005), Markov Logic Networks
(Richardson and Domingos, 2006), ProbLog (De Raedt et al., 2007) ...

m Inductive Logic Programming, e.g.,
m Plotkin (1970), Shapiro (1991), Muggleton (1991), De Raedt (1999) ...
m Statistical Predicate Invention (Kok and Domingos, 2007)

m Neural-symbolic Connectionism

m Propositional rules: EBL-ANN (Shavlik and Towell, 1989), KBANN (Towell
and Shavlik, 1994), C-LIP (d'Avila Garcez and Zaverucha, 1999)

m First-order inference (no training of symbol representations): Unification
Neural Networks (Hélldobler, 1990; Komendantskaya, 2011), SHRUTI
(Shastri, 1992), Neural Prolog (Ding, 1995), CLIP++ (Franca et al., 2014),
Lifted Relational Networks (Sourek et al., 2015)

m Recent: Logic Tensor Networks (Serafini and d'Avila Garcez, 2016),
TensorLog (Cohen, 2016), Differentiable Inductive Logic (Evans and
Grefenstette, 2017)

For overviews see Besold et al. (2017) and d'Avila Garcez et al. (2012)
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Outline

Link prediction & symbolic vs. neural representations
Regularize neural representations using logical rules

m Model-agnostic but slow (Rocktaschel et al., 2015)
m Fast but restricted (Demeester et al., 2016)
m Model-agnostic and fast (Minervini et al., 2017)

End-to-end differentiable proving (Rocktéschel and Riedel, 2017)

m Explicit multi-hop reasoning using neural networks
m Inducing rules using gradient descent

Outlook & Summary
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Notation

m Constant: HOMER, BART, LISA etc. (lowercase)

m Variable: X, Y etc. (uppercase, universally quantified)

m Term: constant or variable
Restricted to function-free terms in this talk

m Predicate: father(Of, parentOf etc.
function from terms to a Boolean

m Atom: predicate and terms, e.g., parent0f (X, BART)

m Literal: atom or negated or atom, e.g.,
not parentOf(BART, LISA)

m Rule: head - body.
head: atom
body: (possibly empty) list of literals representing conjunction
Restricted to Horn clauses in this talk

m Fact: ground rule (no free variables) with empty body, e.g.,
parent0f (HOMER, BART).
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m placeOfBirth attribute is missing for 71% of people!
m Commonsense knowledge often not stated explicitly

m Weak logical relationships that can be used for inferring facts
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Symbolic Representations

m Symbols (constants and predicates) do not share any information:
grandpaOf # grandfatherOf

m No notion of similarity: APPLE ~ ORANGE, professorAt ~ lecturerAt

m No generalization beyond what can be symbolically inferred:
isFruit(APPLE), APPLE ~ ORGANGE, isFruit(ORANGE)?

m Hard to work with language, vision and other modalities
‘“is a film based on the novel of the same name by’’(X, Y)

m But... leads to powerful inference mechanisms and proofs for predictions:
father0f(ABE, HOMER). parent0f (HOMER, LISA). parent0f(HOMER, BART).
grandfather0f(X,Y) :— father0f(X, Z), parent0f(Z, Y).
grandfather0f(ABE, Q)? {Q/ri1sAa},{Q/BART}
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Symbolic Representations

m Symbols (constants and predicates) do not share any information:
grandpaOf # grandfatherOf

m No notion of similarity: APPLE ~ ORANGE, professorAt ~ lecturerAt

m No generalization beyond what can be symbolically inferred:
isFruit(APPLE), APPLE ~ ORGANGE, isFruit(ORANGE)?

m Hard to work with language, vision and other modalities
‘“is a film based on the novel of the same name by’’(X, Y)

m But... leads to powerful inference mechanisms and proofs for predictions:
father0f(ABE, HOMER). parent0f (HOMER, LISA). parent0f(HOMER, BART).
grandfather0f(X,Y) :— father0f(X, Z), parent0f(Z, Y).
grandfather0f(ABE, Q)? {Q/ri1sAa},{Q/BART}

m Fairly easy to debug and trivial to incorporate domain knowledge:
Show to domain expert and let her change/add rules and facts
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Neural Representations

m Lower-dimensional fixed-length vector representations of symbols
(predicates and constants):
k
VirpLe, Vorance, VEather0f, - - € R
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Neural Representations

m Lower-dimensional fixed-length vector representations of symbols
(predicates and constants):
VappLE;, VORANCE; VEatherOf, - - - € Rk

m Can capture similarity and even semantic hierarchy of symbols:
VgrandpaOf = VgrandfatherOf,
VappLe ™~ VorancEs VarpLe < VrruiT

m Can be trained from raw task data (e.g. facts in a knowledge base)

m Can be compositional
Véiis the father of’’ = RNNg(Vis, Vihe, Veather, Vor)

m But... need large amount of training data

m No direct way of incorporating prior knowledge
VgrandfatherOf(X7 Y) - VfatherOf(X, Z)7 VparentOf(Zy Y)
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State-of-the-art Neural Link Prediction

livesIn(MELINDA, SEATTLE)? = ﬂ‘)(VlivesIm VMELINDA 5 VSEA’["I‘LE)
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State-of-the-art Neural Link Prediction

liveSIn(l\"IELINDAa SEATTLE)? = fO(VlivesIny VMELINDA » VSEA'["I'],E)

DistMult (Yang et al., 2015) ComplEx (Trouillon et al., 2016)
VS7VI'7vj€Rk VS,V,',VJ'G(Ck
fo(vs, vi, vj) = v (v © v)) fo(vs, vi, v;) =
_ Z Vel Vik Vi real(vs) " (real(v;) ® real(v;))
K + real(vs) " (imag(v;) © imag(v;))

+ imag(vs)T(real(v,-) © imag(v;))
—imag(v.) " (imag(v) ® real(v;))
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State-of-the-art Neural Link Prediction

1iveSIn(MELINDA7 SEATTLE)? = fO(VlivesIny VMELINDA » VSEA'I"I'],E)

DistMult (Yang et al., 2015) ComplEx (Trouillon et al., 2016)
Vs,V,',VJ'ERk VS,V,',VJ'G(Ck
fo(vs, vi, vj) = v (v © v)) fo(vs, vi, v;) =
_ Z Vel Vik Vi real(vs) " (real(v;) ® real(v;))
K + real(vs) " (imag(v;) © imag(v;))

+ imag(vs) " (real(v;) © imag(v;))

. — imag(vs) " (imag(w) © real(v;))
Training Loss

£= Y —ylog(o(fa(vs,vi, ) = (1 = y)log (1 — o(fa(vs, vi, )
rs(ei,e),y € T
m Learn vs, v;, v; from data
m Obtain gradients V,. £, V,.£, V.,jil by backprop
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Regularization by Propositional Logic
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Zero-shot Learning Results
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Lifted Regularization by Implications
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Lifted Regularization by Implications

Every father is a parent ~ Generalises to similar relations (e.g. dad)
Every mother is a parent  Generalises to similar relations (e.g. mum)
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Lifted Regularization by Implications

Every father is a parent ~ Generalises to similar relations (e.g. dad)
Every mother is a parent  Generalises to similar relations (e.g. mum)
Every parent is a relative  No training facts needed!

Before After

A implied by father of

mother of

mother of

parent of mum of

Y

Y

Demeester et al. (2016), EMNLP 14/30



Lifted Regularization by Implications

Every father is a parent
Every mother is a parent

vX,Y :

n(X,Y) - b(X, Y)

V(e ) € C2: [n]" [er, e > [b] " [er, ]

‘v’(e,-,ej) e @R - [[e,-, ej]] S Rﬁ_

Every parent is a relative | [n] > [b],
Before
A implied by father of
mother of
parent of
0 Ll

Demeester et al. (2016), EMNLP
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Adversarial Regularization

Clause A: h(X,Y) = bi(X,2) A bo(Z,Y)

v m Regularization by propositional rules needs
grounding — does not scale to large
domains!
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Adversarial Regularization

Clause A: h(X,Y) = bi(X,2) A bo(Z,Y)
— ' m Regularization by propositional rules needs
grounding — does not scale to large

domains!

m Lifted regularization only supports direct
implications

m ldea: let grounding be generated by an
adversary and optimize minimax game...
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Clause A:

Adversarial Regularization

A(X,Y) = by(X, Z) A ba(Z, Y)
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r r
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Adversary finds maximally violating
grounding for a given rule
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Adversarial Regularization

A(X,Y) = by(X, Z) A ba(Z, Y)
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~ ¥

|72 104(x.y) = 0n(x.2) 0 (2.9)]

Inconsistency Loss

Minervini et al. (2017), UAI

Regularization by propositional rules needs
grounding — does not scale to large
domains!

Lifted regularization only supports direct
implications

Idea: let grounding be generated by an
adversary and optimize minimax game...
Adversary finds maximally violating
grounding for a given rule

Neural link predictor attempts to minimize
rule violation for given generated
groundings

14/30
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End-to-End Differentiable Prover

Neural network for proving queries to a knowledge base
Proof success differentiable w.r.t. vector representations of symbols
Learn vector representations of symbols end-to-end from proof success

Make use of provided rules in soft proofs

Induce interpretable rules end-to-end from proof success

Rocktadschel and Riedel (2017), NIPS 15/30



Approach

‘, Nando de Freitas @NandoDF - 5 Aug 2016 v
Neuralise (verb,#neuralize): to implement a known thing with deep nets. Usage:
Let's neuralize warping, neuralize this! And train it!
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Approach

". Nando de Freitas @NandoDF - 5 Aug 2016 v
Neuralise (verb,#neuralize): to implement a known thing with deep nets. Usage:
Let's neuralize warping, neuralize this! And train it!

O 6 n 28 Q 64 =

Yann LeCun
@ylecun

Replying to @NandoDF

sort of like "kernelize" used to be.

10:11 AM - 5 Aug 2016

Let's neuralize Prolog's Backward Chaining using a Radial Basis Function
kernel for unifying vector representations of symbols!
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Prolog's Backward Chaining

Example Knowledge Base:
fatherOf(ABE, HOMER).
parent0f (HOMER, BART).

grandfather0f(X,Y) -
father0f(X, Z),

parent0£(Z,Y).
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Prolog's Backward Chaining

Example Knowledge Base:

fatherOf(ABE, HOMER).
parent0f (HOMER, BART).

grandfather0f(X,Y) -
father0f(X, Z),
parent0£(Z,Y).

Intuition:

m Backward chaining translates a query into subqueries via rules, e.g.,
grandfatherOf(ABE, BART) father0f(ABE, Z), parent0f(Z, BART)

m It attempts this for all rules in the knowledge base and thus specifies a
depth-first search
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Unification

Example Knowledge Base:
father0f(ABE, HOMER).
parent0f(HOMER, BART).

grandfather0f(X,Y) -
father0£f(X,Z),
parent0f(Z,Y). Query
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Unification

Example Knowledge Base:
m fatherOf(ABE, HOMER).
[2.] parent0f (HOMER, BART).
grandfather0f(X,Y) -
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Unification

Example Knowledge Base:
fatherOf(ABE, HOMER).
parent0f(HOMER, BART).

grandfather0f(X,Y) -
father0£f(X,Z),

parent0£f(Z,Y). Query
State t State t + 1
& {SUCCESS [l T i &V FALL
FAIL SUCCESS FAIL
18/30

Tim Rocktaschel End-to-End Differentiable Proving



Unification

Example Knowledge Base:
father0f(ABE, HOMER).
parent0f(HOMER, BART).

grandfather0f(X,Y) -
father0£f(X,Z),

parent0£f(Z,Y). Query
State t State t + 1
& {SUCCESS [l 3 pui &V FALL
FAIL FAIL SUCCESS
18/30

Tim Rocktaschel End-to-End Differentiable Proving



Unification

Example Knowledge Base:
father0f(ABE, HOMER).
parent0f(HOMER, BART).

m grandfather0f(X,Y) -
father0£f(X,Z),
parent0£f(Z,Y). Query
lgrand s e :
State t 7 ............... 7 ............... 7 ........... State ¢ 41
.......... ___ X/ase |}
X v | ey 1 SUCCESS

& \SUCCESS [mmlBlli grandfather0f

SUCCESS

X/ABE

18/30
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Unification Failure

Example Knowledge Base:
father0f(ABE, HOMER).
parent0f(HOMER, BART).
m grandfather0f(X,Y) -

father0£f(X,Z),
parent0£f(Z,Y). Query
:. v grandpao R P
State t -...........? ............... 7 .........

| \

FAIL X/ABE
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Neural Unification

Example Knowledge Base:
father0f(ABE, HOMER).
parent0f(HOMER, BART).
m grandfather0f(X,Y) -
father0£f(X,Z),

Query

parent0£(Z, Y). grandpa0f ABE BART
A LA R
L IR0 OO ROD

State t ? ? ?

g 10

X/ABE  Y/BART
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Neural Unification

Example Knowledge Base:
father0f(ABE, HOMER).
parent0f(HOMER, BART).
m grandfather0f(X,Y) -
father0£f(X,Z),
parent0£f(Z,Y).

State t

g 10

k2

grandpaOf ABE

Query
BART

X Y
X/ABE  Y/BART

| VgrandpaOf —VgrandfatherOf ll2

min (1.07exp<
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Differentiable Prover

Example Knowledge Base: g v 1.0
father0f (ABE, HOMER).
[2.] parent0t(HOMER, BART). grandpaOf = ABE = BART
. 4 Yoo Bl Y S Y
Bl eranesamenor(,v) -
father0f(X, Z),
parent0f(Z, Y).
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Differentiable Prover

Example Knowledge Base: g v 1.0
father0f (ABE, HOMER).

parent0f(HOMER, BART). grandpalf =~ ABE BART
2 8 Sl 5
[8] grandfatheros(X, Y) - QROQ 000 QO
father0f(X,7Z),
parent0f(Z,Y).
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Differentiable Prover

Example Knowledge Base: a1 1.0
father0f(ABE, HOMER).
parentOf (HOMER, BART).
randfather0f(X
father0f(X,
parent0f(Z,Y).

grandpaOf ABE BART

3.1 father0£f(X,Z)
3.2 parent0£(Z,Y)
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Differentiable Prover

Example Knowledge Base: a1 1.0
atherOf(ABE, HOMER).
arentOf (HOMER, BART).
grandfather0f(X. V) -
father0f(X,7),
parent0f(Z,Y).

grandpaOf ABE BART

3.1 father0£f(X,Z)
3.2 parent0£(Z,Y)

.
*
(e
.

fatherOf ABE “.-"

[ v Y B
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Differentiable Prover

Example Knowledge Base: a1 1.0
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grandpaOf ABE BART
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Differentiable Prover

Example Knowledge Base: a1 1.0
father0f(ABE, HOMER).
parentOf (HOMER, BART).
grandfather0f(X,Y) -
father0f(X,7Z),
parent0f(Z,Y).

3.1 father0£f(X,Z)
3.2 parent0£(Z,Y)

““
fatherOf ABE
[ Yo Y N STTTTLILEL
COATA AL
:
) X/aBE ¥
3.2 parent0£f(Z, Y)| v/sarr b
7fwomen ! FATL
H
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Differentiable Prover

Example Knowledge Base: a1 1.0
father0f(ABE, HOMER).
parentOf (HOMER, BART).
grandfather0f(X,Y) -
father0f(X,7Z),
parent0f(Z,Y).

grandpaOf ABE BART

3.1 father0£f(X,Z)
3.2 parent0£(Z,Y)

father0f

[ 84 e
LA A ...

X /ABE
3.2 parent0£(Z, Y) | v/sart
R 7/womER

FETTIY

parentOf  HOMER BART

000 000 PO
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Differentiable Prover

Example Knowledge Base: a1 1.0
father0f(ABE, HOMER).
parent0f(HOMER, BART).
grandfather0f (X -
father0f (>
parent0f(Z,Y).

grandpaOf ABE BART

3.1 father0£f(X,Z)
3.2 parent0£(Z,Y)

father0f

[ 84 e
LA A ...

e
3.2 parent0£(Z, Y) | v/sarr 1
& 2/uonen § FATL
K H
:
parentOf  HOMER BART
H H
o | o |
Y/BART FATL Y /BART
7/HOMER § 40 Z,/HoME
H
HES ] H
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Differentiable Prover

Example Knowledge Base: a1 1.0
father0f(ABE, HOMER).
parent0f(HOMER, BART).
grandfather0f(X,Y) -
father0f(X,7Z),
parent0f(Z,Y).

grandpaOf ABE BART

fatherOf ABE
[ v B Y ~
COATA AL
:
) X/ABE
3.2 parent0£f(Z, Y)| v/sarr b
.‘0 Z/HOMER | FAIL
: H
parentOf  HOMER BART

X /ABE
Y /BART
7 /HOMER

X /A1

Y /BART
o [ FAIL Z/HOME
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Differentiable Prover

Example Knowledge Base: a1 1.0
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grandfather0f(X,Y) -
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parent0f(Z,Y).

grandpaOf ABE BART

3.1 father0£f(X,Z)
3.2 parent0£(Z,Y)

father0f

[ 84 e
LA A ...

] e
3.2 parent0£(Z, Y) | v/sarr 1
o Z/HOMER | FAIL Z[BART |
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parentOf  HOMER BART parentOf BART
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Differentiable Prover

Example Knowledge Base: a1 1.0
father0f(ABE, HOMER).
parent0f(HOMER, BART).
grandfather0f (X -
father0f (>
parent0f(Z,Y).

grandpaOf ABE BART

3.1 father0£f(X,Z)
3.2 parent0£(Z,Y)

.
-
0
o

fatherOf ABE
[ v B Y S FTTI L L
COAA LA
;
: X/aBE ¥ ;
3.2 parent0£(Z, Y) | v/sarr 1 3.2 parent0£(Z,Y)
o Z/HOMER | FAIL Z[BART | *
K ' '
parentOf  HOMER BART parentQf BART BART

X /ABE X/ ABE X /ABE X/ABE
Y /BART FATL Y /BART Y /BART FATL Y /BART
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Neural Program Induction

Example Knowledge Base:
father0f(ABE, HOMER).
[2.] parent0f(HOMER, BART).
3.| grandfather0£(X,Y) -
father0f(X,7Z),
parent0f(Z,Y).

X/ape b
3.2 parent0f(7. ¥ Y/BART 3.2 parent0£(Z. Y

Z/HOMER * FATL Z/BART Y

: ' . “

: :

: H

- s

parentOf  HOMER BART parentOf  BART BART

000000 OO RO POY. OGS

X /ABE X/ ABE X /ABE X/ABE
Y /BART FATL Y /BART Y /BART FATL Y /BART
7,/HOMER 40 Z,/HoME 7/BART Z/BART
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Neural Program Induction

Example Knowledge Base: a1 1.0
atherOf(ABE, HOMER).

arentOf (HOMER, BART).
(X, Y) -

grandpaOf ABE BART
o

02(X, 7),
05(2, ).
: :
) X/amE 1 X/aBE 1
3.2 05(2,Y) | v/pare Y/BART 3
o Z/HOMER | FAIL Z[BART |
K H H
T oe, HOMER BART
§ § 2 &
1 1 1 1
o | o | . o |
Y /BART 4 Y/BART 4 Y/Bart 1 Y/mart
7/HOMER § 40 FAIL Z/HOMER § Z/BART FALL Z/BART §
H H H H
HES ] H H H
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Training Objective

grandpaOf  ABE BART

H H

T T X/apE ! MRTIIR X/apE ! X/aBE !
(2 a Y/BART Y/BART 1 Y/BART Y/BART ¥
' ' 7/HOMER + Z/1noMER § 40 Z/BART ) Z/BART

1 1 1 1

HE ] . V3 HE ] H

A
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Training Objective

grandpaOf  ABE BART

T T X/apE ! MRTIIR X/ABE ' X/ABE '
a °~§‘O (28 °~§‘p Y/BART ¥ Y/BART b Y /BART ¥ Y/pART +
' ' 7/HOMER + Z/1noMER § 40 7/BART + 7/BART +
H H H H
o . V3 HE ] HE o]

max pooling ]

T K e—

fo(grandpaOf (ABE, BART))
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Training Objective

grandpaOf  ABE BART

T T X/apE ! MRTIIR X/ABE ' X/ABE '
a °~§‘O (28 °~§‘p Y/BART ¥ Y/BART b Y /BART ¥ Y/pART +
' ' 7/HOMER + Z/1noMER § 40 7/BART + 7/BART +
H H H H
o . V3 HE ] HE o]

[ max pooling

TSN Foe—

fo(grandpaOf (ABE, BART))

4

m Loss: negative log-likelihood w.r.t. target proof success
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Training Objective

grandpaOf  ABE BART

H H
v H Xfane ! MRTIIR X/apE ! X/apE !
I °~§‘p I °~§ﬂ Sore | o 4 oame | A
' ' 7/HOMER + Z/1noMER § 40 7/BART + 7/BART +
H H H H

o HE ) HES ] HE. ]

[ max pooling

TSN Foe—

fo(grandpaOf (ABE, BART))

4

m Loss: negative log-likelihood w.r.t. target proof success

m Trained end-to-end using stochastic gradient descent
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Training Objective

grandpaOf  ABE BART

T T X/apE ! MRTIIR X/ABE ' X/ABE '
% O~§AC' 2 °~§‘p Y/BART ¥ Y/BART b Y /BART ¥ Y/pART +
' ' 7/HOMER + Z/1noMER § 40 7/BART + 7/BART +
H H H H

HE ] . V3 HE ] HE o]

AN /

max pooling

T K e—

fo(grandpaOf (ABE, BART))

4

m Loss: negative log-likelihood w.r.t. target proof success
m Trained end-to-end using stochastic gradient descent

m Vectors are learned such that proof success is high for known facts and
low for sampled negative facts
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Calculation on GPU

saa0¢ EDEDEEN—OOC) - -
;AAAAI;AAAA Q

parentﬂf Y ) ) OO II()\II‘.R ‘
LA ATA LA A A
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Calculation on GPU

dadof ABE

Q

parent0f HOMER

fatherOf
parent0f

et grandma0f

ABE
HOMER

MONA

HOMER

BART

LISA
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Calculation on GPU
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parent0f HOMER Q
fatherOf

parent0f

et grandma0f

ABE
HOMER
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HOMER
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Calculation on GPU

dadof ABE

parent0f HOMER
fatherOf
parent0f

et grandma0f

ABE
HOMER

bt MIONA

HOMER

BART
HOMER

LISA

BART

HOMER

e LISA

BART

LISA

>0« O < (I T |

unify
(symbolic)
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Calculation on GPU

dadof ABE

O

parent0f HOMER
fatherOf
parent0f

et grandma0f

ABE =
HOMER Y
I VTN —
A HOMER
Yo
A BART
HOMER v
R LISA
BART [TTTCTTTTTIITTITTITITTTTTTTTITTPTTITIIIIT = Q /
N\ HOMER
4
e LISA A
' BART
A
' LISA
A
unify
(symbolic)

Tim Rocktaschel End-to-End Differentiable Proving 21/30



Experiments

Benchmark Knowledge Bases: Kinship, Nations, UMLS (Kok and Domingos,
2007), and Countries (Bouchard et al., 2015)

Test Country Region Test Country Region
locatedIn —>O O

/

locatedIn

locatedIn

neighbor0f locatedIn neighbor0f locatedIn

locatedIn locatedIn

locatedIn — locatedIn —
Train Country Subregion Train Country Subregion
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Experiments

Benchmark Knowledge Bases: Kinship, Nations, UMLS (Kok and Domingos,
2007), and Countries (Bouchard et al., 2015)

Test Country Region

O locatedIn />O

locatedIn

neighbor(0f

locatedIn

locatedIn —»

Train Country Subregion
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Experiments

Benchmark Knowledge Bases: Kinship, Nations, UMLS (Kok and Domingos,
2007), and Countries (Bouchard et al., 2015)

Test Country Region Test Country Region
===+ locatedIn --p
' £ A

\\ locatedIn locatedIn
. .

neighbor0f »/  locatedIn neighbor0f locatedIn
I" \‘A
,* locatedIn locatedIn
.'.' \\ S
O— locatedIn —p~ locatedIn =9
Train Country Subregion Train Country Subregion
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Details

m Models implemented in TensorFlow
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Details

m Models implemented in TensorFlow

ComplEx Neural link prediction model by Trouillon et al. (2016)
End-to-end differentiable prover
ProverA Same, but representations trained with ComplEx as auxiliary task

m Rule Templates:

Kinship, Nations & UMLS

20 #1(X,Y) = #2(X,Y).

20 #1(X,Y) = #2(Y, X).

20 #1(X,Y) - #2(X, Z), #3(Z, V).
Countries S1

3 #1(X,Y) = #1(Y, X).

3 #1(X, V) = #2(X,7), #2(Z, V).
Countries S2

3 #1(X, V) - #2(X,2), #3(Z, V).
Countries S3

3HL(X,Y) = #2(X,7), #3(Z, W), #4(W, ).
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Results

B ComplEx
L

100
82

70
62

Accuracy / HITS@1
o
(00)

0 1 1 1 1
Countries S3  Kinship Nations UMLS
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Results

. ComplEx |:| Prover . Prover\

100
82 82 87

7 76

80

60

40

Accuracy / HITS@1

20

Countries S3  Kinship Nations UMLS
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Examples of Induced Rules

Corpus ‘ Induced rules and their confidence

S1 | 0.90 locatedIn(X,Y) :- locatedIn(X,Z), locatedIn(Z,Y).
Countries  S2 | 0.63 locatedIn(X,Y) :—neighbor0f(X,Z), locatedIn(Z,Y).
S3 | 0.32 locatedIn(X,Y) :— neighbor0f(X,Z), neighbor0f(Z, W), locatedIn(W,Y).

0.68 blockpositionindex(X,Y) :— blockpositionindex(Y,X).
0.46 expeldiplomats(X,Y) :—negativebehavior(X,Y).

0.38 negativecomm(X,Y) :— commonblocO(X,Y).

0.38 intergovorgs3(X,Y) :— intergovorgs(Y,X).

Nations

0.88 interacts_with(X,Y) :— interacts_with(X,Z), interacts_with(Z,Y).
UMLS 0.77 isa(X,Y) = isa(X,Z), isa(Z,Y).
0.71 derivative of(X,Y) :-derivative_of(X,Z), derivative_of(Z,Y).
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Outlook
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Outlook

Question

My patient is not responding after
three days of codeine treatment.
What could have happened?

User
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Outlook

Databases

IKIDATA

Question

My patient is not responding after

three days of codeine treatment.
Structured Data What could have happened?

User

WIKIPEDIA

‘The Free Encyclopedia

Teacher

Explanations
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Publications
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Question
My patient is not responding after
three days of codeine treatment.

Structured Data What could have happened?

User

WIKIPEDIA

‘The Free Encyclopedia
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Outlook

Databases Question

My patient is not responding after
e |II |" three days of codeine treatment.
i Structured Data What could have happened?

@ORUGBANK

Publications

User

WIKIPEDIA

‘The Free Encyclopedia

Teacher
Morphine intoxication

Proof

- Codeine is metabolized to morphine

- Mutation in CYP2D6 can cause ultrarapid metabolization
- Ultrarapid metabolization can lead to morphine overdose
- Morphine overdose is an intoxication
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Summary

m We proposed various ways of regularizing vector representations of
symbols using rules
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Summary

m We proposed various ways of regularizing vector representations of
symbols using rules

m We used Prolog's backward chaining as recipe for recursively constructing a
neural network to prove queries to a knowledge base

Proof success differentiable w.r.t. vector representations of symbols
Symbolic rule application but neural unification

Learns vector representations of symbols from data via gradient descent
Induces interpretable rules from data via gradient descent

Various computational optimizations: batch proving, tree pruning etc.

Future research:

m Scaling up to larger knowledge bases
m Connecting to RNNs for proving with natural language statements
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Thank you!

http://rockt.github.com
tim.rocktaschel@cs.ox.ac.uk
Twitter: @_rockt


http://rockt.github.com
tim.rocktaschel@cs.ox.ac.uk
https://twitter.com/_rockt
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