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A spectrum

—

of modelling methods

Restricted PPLs as
interfaces to particular
inference algorithms

(BUGS) |

—

& Inference for
particular problems

(e.g. R package)

with interchangeable
inference algorithms
(e.g. Anglican)
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Motivation

What is a semantic foundation for
probabilistic programming?
How can it help us with:

® expressivity of languages?

e validity of inference algorithms?

e validity & meaning of programs/models?



Overview

e Part 1: lllustrations of key ideas.
e Simple example, semantic approaches
e Bayesian regression and h.o. functions

e Part 2: From new foundations to
modular and valid inference algorithms.

e Part 3: What next?




Probabilistic programming
P(xld) cc P(dIlx) x P(x)
Posterior o¢c Likelihood X Prior

probabilistic programming =
sequential programming +

normalize observe sample



Example

—h

A call centre operator doesn’t know what day it is.

2. He knows: weekends: avg 3 calls per hour.
weekdays: avg 10 calls per hour.

3. He notices a 15 minute gap between calls.
4. Is it the weekend? i

3 exp|10)

LT &p(?ﬂ
normalize( o iomim

let weekend = sample(bernoulli(2/7)) in
let rate = if weekend then 3 else 10 in
observe 0.25 from exp-dist(rate);

return(weekend) )

60 mins
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What do Prob. Prog’s mean?

The meaning of a program of type A
IS a measure on A (typically unnormalized).

let x = sample(u) in k(x)
means [ k(x) p(dx)

observe x from p ; k means pdfu(x) x k

normalize(k) means k/(Jk)

Staton, ESOP 2017



Example

Unnormalized posterior:

m(weekend=true) = 2/7 x 1.42 = 0.405
m(weekend=false) = 5/7 x 0.82 = 0.586
Normalized posterior: li
exp|10)

o(weekend=true) = 0.405 / 0.991

= 0.408 . ::::::\gm@)

0 |

normalize( 0 15mins
let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1in
observe 0.25 from exp-dist(rate);
return(weekend) )

60 mins
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Example

A call centre operator doesn’t know what time it is.
He knows how the avg num of calls varies with time.
He notices a 15 minute gap between calls.

What time is it?

Unnormalized posterior:
m(U) = [ f(t) e025 / 24 dit

e

normalize(
let time = sample(uniform(0,24)) in
let rate = f(time) in
observe 0.25 from exp-dist(rate);
return(time) )
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How do we run prob prog’s?

Monte Carlo simulation:
1. run many times;
2. each run gives a result & importance weight

sample(p) means sample from i,
then run k

observe x from u  means multiply current
weight by pdf,(x)

Normalization constant = average weight



Example

Two possible traces:

weekend=true (prob 2/7)
weight=1.42
result=true

weekend=false (prob 5/7)
weight=0.82 L

result=false ul ::::::‘gmﬁ)

exp|10)

0

0 15 mins

let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1in
observe 0.25 from exp-dist(rate);
return(weekend)

60 mins
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How do we run prob prog’s?

Monte Carlo simulation:
1. run many times;
2. each run gives a result & importance weight

Cconcerns:

1. too much time spent on low weight traces
solution: SMC (sequential Monte Carlo)

2. resampling everything each time is costly
solution: MCMC, MHG
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Bayesian regression

104

.1 ® Which function best
fits the data points?
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10 -

let s

observe
observe
observe
observe
observe
return f

sample (normal 0 2)
sample (normal @ 6)

AX.
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(spot the mistake
in the model?)
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normalize(
let s = sample (normal @ 2)
o b = sample (normal 0 6)
f =AX. s X + b 1n
o4 observe 0.6 from (normal (f Q)
.| observe 0.7 from (normal (f 1)
observe 1.2 from (normal (f 2)
74 observe 3.2 from (normal (f 3)
.| observe 6.8 from (normal (f 4)
observe 8.2 from (normal (f 5)
541 observe 8.4 from (normal (f 6)
.| return f)
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normalize(

let s = sample (normal 0 2)
b = sample (normal 0 6)
f AX. S X + b 1n

return f )

10

9 -

1 1 | | ] ] | | ] ' | 1
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Samples from the prior
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normalize(
let s = sample (normal @ 2)
.- b = sample (normal 0 6)
f =AX. s X + b 1n
o4 observe 0.6 from (normal (f @) .5)
.| observe 0.7 from (normal (f 1) .5)
observe 1.2 from (normal (f 2) .5)
74 observe 3.2 from (normal (f 3) .5)
.| observe 6.8 from (normal (f 4) .5)
observe 8.2 from (normal (f 5) .5)
541 observe 8.4 from (normal (f 6) .5)
,| return )
e Question: how to
understand f in
this example?

I 1 I 1 I 1

3.5 4.0 4.5 5.0 5.5 6.0
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Technical problem

Measure theory doesn’t support HO fns well.

ev: (R—=>mR) x R — R, ev(f,x) = flx).

Theorem [Aumann 61]. ev is not measurable no
matter which o-algebra is used for R—R.

Corollary. Measurable spaces don't fully support
higher order functions. (Not Cartesian closed.)
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normalize(

let f =
(let s = sample (normal @ 2)
b = sample (normal @ 6) in
return AX. s X + b) in
observe 0.6 from (normal (f @) .5)
observe 0.7 from (normal (f 1) .5)
observe 1.2 from (normal (f 2) .5)
observe 3.2 from (normal (f 3) .5)
observe 6.8 from (normal (f 4) .5)
observe 8.2 from (normal (f 5) .5)
observe 8.4 from (normal (f 6) .5)
return f )

More higher-order functions
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normalize(
let f = piecewise
(let s = sample (normal @ 2)
b = sample (normal @ 6) in

return AX. s X + b) in

observe 0.6 from (normal (f @) .5)
observe 0.7 from (normal (f 1) .5)
observe 1.2 from (normal (f 2) .5)
observe 3.2 from (normal (f 3) .5)
observe 6.8 from (normal (f 4) .5)
observe 8.2 from (normal (f 5) .5)
observe 8.4 from (normal (f 6) .5)
return f )

Piecewise linear functions
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normalize(
let f = piecewise
(let s = sample (normal 9 2)

o b = sample (normal ) 6) in

g return Ax. s x + b) in

.. 0bserve 0.6 from (normal ( @) .- eu=
observe 0.7 from (normal |

"~ observe 1.2 from (norm—"; .

6- observe 3.2 from (norr [/}

. observe 6.8 from (nori|[/}/
observe 8.2 from (- |

‘- observe 8.4 from '/ i1

s~ return f ) i

— Could also try
P = = o = sl rolynomial priors, or
programs as priors.

Posterior
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Modular inference algorithms

[ A [4—
Model [ |IR4 I—1> IR» |—2> |n—1> IR, | |Sampler

. | /
\\ | 4
True mathematical

semantics

e exact inference is intractable

e approximate inference algorithms work
by manipulating intermediate
representations
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Kock TAC 2012
- Scibior, Kammar, Vakar,
Staton, Yang, Cai,
ntnetic measure theor
Heunen, Ghahramani
POPL 2018

What’s a mathematical universe for
probabilistic programming?

What’s a synthetic measure theory??

e Want h.o. functions and natural numbers.
Cartesian closed category with sums.

e \Want a space of measures M(X) on every space X.
A commutative monad M.

o Want M(1) to behave like [0,]
M(0)=1, M(X+Y)=M(X)xM(Y).
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Kock TAC 2012
- Scibior, Kammar, Vakar,
Staton, Yang, Cai,
ntnetic measure theor
Heunen, Ghahramani
POPL 2018

Cart closed category with + & a commutative additive monad.

Dictionary:

+ve scalars 10,1] =M1

pushforward f ) = (M f)(p)

Dirac measure = return(z)

Integration 9@( fl@)p(dz) =p>=f

Product meas. p® v = 5@( (9@, Q(x’y)g(dy)) p(dz)
Expectation — Ef.u[f(z)] =p>=f

Problem: classical measure theory
IS not a model!
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A semantic model

Standard )
Borel spaces|embedding

Models

first order
language with
sample,

score

Slogan: Random
elements come first.

Quasi-Borel
spaces

Models
higher order
language with
sample,

score

Theorem. Adequacy.
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Random elements

a: 0 - X

e X — set of values.

e () =R —set of random seeds.

¢ Random seed generator.



Heunen, Kammar,
Staton, Yang, LICS 2017

Quasi-Borel spaces

Defn. A quasi-Borel space is a pair (X,M) where
e XIs a set

e Mc [R—X]
such that
e if f: R—R measurable and g e Mthen gfe M.

* piecewise combination: if R=w,enA; with R; Borel
and ai,az, ... € M, then vien(ain(RixX))eM.
 all constant functions are in M

A morphism (X,M) — (Y,N)isafunctionf: X— Y
such that g e Mimplies fge N

25/35



Heunen, Kammar,
Staton, Yang, LICS 2017

Quasi-Borel spaces

Defn. A quasi-Borel space is a pair (X,M) where
e XIs a set

e MC[R—X] sit. ...

Example: X is a standard Borel measurable space,
M c [R— X] comprises the measurable functions.

Proposition. Quasi-Borel spaces include standard
Borel spaces fully faithfully.

Proposition. The set of morphisms again forms a
guasi-Borel space: we have higher order functions.
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Synthetic measure theory

What’s the mathematical universe for
probabilistic programming?

What'’s a synthetic measure theory?

e Want h.o. functions and natural numbers.
Cartesian closed category with sums. V

e \Want a space of measures M(X) on every space X.
A commutative monad M.

o Want M(1) to behave like [0,]
M(0)=1, M(X+Y)=M(X)xM(Y).



Heunen , Kammarr, Staton,
Yang, LICS 2017

Standard ‘Quasi-Borel
Borel spaces spaces’

Defn. A quasi-Borel space is a pair (X,M) where
 Xis a set

e MC[R—X] s.t. ...

Defn. A measure on a quasi-Borel space is a pair

(1, 1)
a o-finite m&{sure \a function f: R—=Xin M

on R (modulo inducing the same integration operator)
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Synthetic measure theory

What’s the mathematical universe for
probabilistic programming?

What'’s a synthetic measure theory?

e Want h.o. functions and natural numbers.
Cartesian closed category with sums. /

e \Want a space of measures M(X) on every spage X.
A commutative monad M. j

o Want M(1) to behave like [0,]
M(0)=1, M(X+Y)=M(X)xM(Y).




Heunen , Kammarr, Staton,
Yang, LICS 2017

Standard ‘Quasi-Borel
Borel spaces spaces’

Proposition. A measure on [ X — Y] Is a pair

(M, f)
- a measurable
a measure on R \ function

f-RxX—=Y
— a ‘random function’.

Example: piecewise : M(R—R) — M(R—R)

||||||||



Heunen, Kammar, Staton,
Yang, LICS 2017

let s

normalize(
= sample (normal 0 2)

b = sample (normal @ 6)
g =AX. S X + b in
return g )

o Proposition. A measure on [X = Y] is a pair
8 (IJ' ’ f)
& a measure on/ AT ﬁmmc?i?)snurable
6 frRXX—=Y
o In this example,
= * 1 IS multivariate normal,
1- * f((s,b),x) = sx+b

T T T T T T T T T T T 1
0.0 0.5 1.0 15 20 25 30 35 40 45 50 55 6.0

NB R=R xR
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Modular inference algorithms

Model
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Quasi-Borel space
semantics
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Modular inference algorithms

[ A [4—
Model [ |IR4 I—1> IR» |—2> |n—1> IR, | |Sampler

Example IR (intermediate representation):
[0,1]-indexed decision trees.

Sam a = {Return « | Sample ([0,1] - Sam «a)}

Manipulations of this structure are higher-order
functions.

Theorem: MHG works in quasi-Borel spaces.



Metropolis-Hastings
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Commutativity

I________.__I
et =tin |
:Iety:::uin: =
I I
U I
L - — — — — — — — -

________ 1
lety = win
letz = tin

I
v I
________ -

where x not free in u,

y not free

int
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Staton, Yang, Ackerman, Freer, Roy, PPS 2017

Commutativity=exchangeability?

I________._—I r—— - - - - = 1
etz =tin ety =win
:Iety:uin: — iletz =tin
I I I I
U I U I
L — — — — - — _— - L — — — — - - — -

e Church considers user defined
‘exchangeable random primitives’ — new
commutative constructions.

e Perhaps these make new models of synthetic
measure theory
— just as 1980s ideas in Bayesian non-parametric
came out of non-standard analysis
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Overview
e Part 1: lllustrations of key ideas.

e Part 2: From new foundations to
modular and valid inference algorithms.

¢ A synthetic measure theory
e Quasi-Borel spaces are a model
e Modular & valid inference algorithms

e Part 3: What next?
Exchangeability and commutativity in
non-parametric models




