
Semantic models of
higher order  

Bayesian inference
Sam Staton, Oxford

based on:
ESOP 2017. Sam Staton.
LICS 2017: Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang.
POPL 2018: Adam Scibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok
Yang, Yufei Cai, Klaus Ostermann, Sean Moss, Chris Heunen, Zoubin Ghahramani.

A spectrum of modelling methods

Hand-written models
& inference for
particular problems
(e.g. R package)

Restricted PPLs as
interfaces to particular
inference algorithms
(BUGS)

General purpose PPLs
with interchangeable
inference algorithms
(e.g. Anglican)

2/35

Motivation
What is a semantic foundation for
probabilistic programming?

How can it help us with:

• expressivity of languages?

• validity of inference algorithms?

• validity & meaning of programs/models?

3/35

Overview

• Part 1: Illustrations of key ideas.

• Simple example, semantic approaches

• Bayesian regression and h.o. functions

• Part 2: From new foundations to  
modular and valid inference algorithms.

• Part 3: What next?

Probabilistic programming

Posterior ∝ Likelihood ⨉ Prior
P(x | d) ∝ P(d | x) ⨉ P(x)

probabilistic programming =  
 sequential programming +

normalize observe sample

6/35

Example
1. A call centre operator doesn’t know what day it is.
2. He knows: weekends: avg 3 calls per hour. 

 weekdays: avg 10 calls per hour.
3. He notices a 15 minute gap between calls.
4. Is it the weekend?

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 0.25 from exp-dist(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

Nonetheless, we can give a precise semantics to the language using measure
theory. In brief,

– programs of type A are interpreted as measures on A, and more generally
expressions of type A with free variables in � are measure kernels � A;

– sampling from a prior describes a probability measure;
– observations are interpreted by multiplying the measure of a path by the

likelihood of the data;

6/35

Overview

• Part 1: Illustrations of key ideas.

• Simple example, semantic approaches

• Bayesian regression and h.o. functions

• Part 2: From new foundations to  
modular and valid inference algorithms.

• Part 3: What next?

What do Prob. Prog’s mean?
The meaning of a program of type A  
is a measure on A (typically unnormalized).

let x = sample(μ) in k(x)
means ∫ k(x) μ(dx)

observe x from μ ; k means pdfμ(x) × k

normalize(k) means k/(∫k)

Staton, ESOP 2017

Staton, ESOP 2017  
Kozen 1981

9/35

Example

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 0.25 from exp-dist(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

Nonetheless, we can give a precise semantics to the language using measure
theory. In brief,

– programs of type A are interpreted as measures on A, and more generally
expressions of type A with free variables in � are measure kernels � A;

– sampling from a prior describes a probability measure;
– observations are interpreted by multiplying the measure of a path by the

likelihood of the data;

m(weekend=true) = 2/7 × 1.42 = 0.405

m(weekend=false) = 5/7 × 0.82 = 0.586

Unnormalized posterior:

Normalized posterior:
p(weekend=true) = 0.405 / 0.991

 = 0.408

10/35

Example
1. A call centre operator doesn’t know what time it is.
2. He knows how the avg num of calls varies with time.
3. He notices a 15 minute gap between calls.
4. What time is it?

normalize( 
 let time = sample(uniform(0,24)) in  
 let rate = f(time) in  
 observe 0.25 from exp-dist(rate);  
 return(time))

Unnormalized posterior: 
 m(U) = ∫ f(t) e–0.25f(t) / 24 dt

U

10/35

How do we run prob prog’s?
Monte Carlo simulation:
1. run many times;
2. each run gives a result & importance weight
sample(μ) means

observe x from μ means

sample from μ,
then run k

multiply current
weight by pdfμ(x)

Normalization constant = average weight
11/35

Example

 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 0.25 from exp-dist(rate);  
 return(weekend)

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

Nonetheless, we can give a precise semantics to the language using measure
theory. In brief,

– programs of type A are interpreted as measures on A, and more generally
expressions of type A with free variables in � are measure kernels � A;

– sampling from a prior describes a probability measure;
– observations are interpreted by multiplying the measure of a path by the

likelihood of the data;

weekend=true (prob 2/7)  
weight=1.42 
result=true

weekend=false (prob 5/7)  
weight=0.82 
result=false

Two possible traces:

12/35

How do we run prob prog’s?
Monte Carlo simulation:
1. run many times;
2. each run gives a result & importance weight

Concerns:
1. too much time spent on low weight traces 

 solution: SMC (sequential Monte Carlo)
2. resampling everything each time is costly 

 solution: MCMC, MHG

13/35

Overview

• Part 1: Illustrations of key ideas.

• Simple example, semantic approaches

• Bayesian regression and h.o. functions

• Part 2: From new foundations to  
modular and valid inference algorithms.

• Part 3: What next?

Bayesian regression

• Which function best
fits the data points?

15/35

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 observe 0.6 = (f 0)
 observe 0.7 = (f 1)
 observe 1.2 = (f 2)
 observe 3.2 = (f 3)
 observe 6.8 = (f 4)
 observe 8.2 = (f 5)
 observe 8.4 = (f 6)
 return f)

(spot the mistake  
 in the model?)

15/35

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

15/35

Samples from the prior

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 return f)

15/35

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

• Question: how to
understand f in
this example?

15/35

Technical problem
Measure theory doesn’t support HO fns well.

ev : (ℝ→mℝ) × ℝ → ℝ, ev(f,x) = f(x).

Theorem [Aumann 61]. ev is not measurable no  
matter which σ-algebra is used for ℝ→mℝ.

Corollary. Measurable spaces don’t fully support
higher order functions. (Not Cartesian closed.)

16/35

More higher-order functions

normalize(
 let f =
 (let s = sample (normal 0 2)
 b = sample (normal 0 6) in
 return λx. s x + b) in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

18/35

Piecewise linear functions

normalize(
 let f = piecewise
 (let s = sample (normal 0 2)
 b = sample (normal 0 6) in
 return λx. s x + b) in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

18/35

Posterior

normalize(
 let f = piecewise
 (let s = sample (normal 0 2)
 b = sample (normal 0 6) in
 return λx. s x + b) in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

Could also try
polynomial priors, or
programs as priors.

18/35

Motivation
What is a semantic foundation for
probabilistic programming?

How can it help us with:

• expressivity of languages?

• validity of inference algorithms?

• validity & meaning of programs/models?

19/35

Overview

• Part 1: Illustrations of key ideas.

• Part 2: From new foundations to  
modular and valid inference algorithms.

• Part 3: What next?

How do we run prob prog’s?
Monte Carlo simulation:
1. run many times;
2. each run gives a result & importance weight

Concerns:
1. too much time spent on low weight traces 

 solution: SMC (sequential Monte Carlo)
2. resampling everything each time is costly 

 solution: MCMC, MHG

20/35

Modular inference algorithms
221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Functional programming for modular Bayesian inference PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn�1

Figure 1. Bayesian inference

semantics to prove their correctness. As a consequence, our
implementation is very close to its theoretical foundations,
giving users high assurance in the correctness of inference
algorithms they build using the library.
Figure 1 depicts a high-level view of Bayesian inference

in a typical probabilistic programming system. The system
transforms themodel through a sequence of inference-speci�c
representations IRi . At each step, it applies an inference-
speci�c transformation ti , eventually producing a probabilis-
tic program, called a sampler, whose execution produces
approximate samples from the posterior distribution.
Our library provides such inference representations, and

inference transformers IT, that manipulate these represen-
tations. Users can then de�ne custom IRs by composing
transformers to obtain inference transformer stacks:

IR’ = IT1 � IT2 � · · · � IT`IR
Transformers also allow lifting an inference transformation
to an inference transformation between the transformed
representations:

lift :: (IR1 ! IR2) ! IT IR1 ! IT IR2

To support our claim for modularity, we combine these build-
ing blocks and implement a spectrum of advanced inference
algorithms: Resample-Move SMC [13], Particle Marginal
MH [2], and SMC2 [9].

Our aim is to enable such lean and �exible high-level prob-
abilistic programming libraries to form viable alternatives
to manual Bayesian inference and to existing monolithic
probabilistic programming systems. To achieve it, we need a
performant implementation so that the �exibility in model
construction and modular inference design can be enjoyed
without sacri�cing performance.

Claim 2. Removing the performance bottlenecks in our ap-
proach requires general purpose tried-and-tested programming
language design and implementation tools and techniques.

To support this claim, we �rst distinguish between two
kinds of performance complexity we associate with an in-
ference algorithm. Its statistical complexity measures the
number of iterations we need to run the resulting probabilis-
tic sampler in order to approximate the posterior distribution.
Our library faithfully implements the state-of-the-art algo-
rithms, and so the statistical complexity of our samplers is
performant. The bottlenecks stem from the computational
complexity of the resulting sampler: our use of higher-order
functions, inductive types, and transformer stacks adds lay-
ers of overhead that �ne-tuned manual samplers eliminate.

We claim that the expertise needed to remove these bot-
tlenecks lies not with experts in statistics and Bayesian infer-
ence, but with programming languages experts. Moreover,
we claim that this expertise is already well-developed, and
the only barrier is connecting the experts with the applica-
tion domain. Indeed, Figure 1 depicts the typical structure of
an optimising compiler, transforming the source code, the
model, through a series of intermediate representations, and
emitting an optimised object code, the sampler. Therefore,
we view our approach and its associated libraries as a vehi-
cle to open up a fruitful application area for programming
language design and implementation.
To support this claim, we benchmark the computational

complexity of our library against existing probabilistic pro-
gramming systems and use GHC’s built-in pro�ler to inves-
tigate its bottlenecks. For example, in our preliminary ex-
periments the bottleneck was an ine�cient implementation
of a free monad. Replacing the free monad with a Church-
encoded version removed the performance bottleneck. We
expect that applying similar techniques, such as �nally-
tagless [6], stream fusion [10], information-�ow graphs and
other static-analyses, and aggressive compiler optimisations,
would remove similar bottlenecks.

The paper is structured as follows. In Section 2 we show
the construction of basic inference transformers and associ-
ated transformations, demonstrating how their application
leads to simple inference algorithms. In Section 3 we show
how to compose those building blocks to obtain advanced
inference algorithms. Then in Section 4 we present an em-
pirical evaluation of our library comparing it with existing
probabilistic programming systems in terms of performance
and implementation e�ort required. In Section 5 we discuss
how our modular structure enables a deterministic approach
to testing inference algorithm implementations. Finally, in
Section 6 we discuss related work and in Section 7 we present
directions for future work and conclude.

2 Building blocks
We express the building blocks for inference algorithms using
standard functional programming techniques. Unless stated
otherwise, the structures presented in this section follow the
mathematical formulation of Ścibior et al. [32].

2.1 Models
Weexpress probabilistic programs as computations abstracted
over inference representations, instances of a particular type-
class called MonadInfer supporting the probabilistic e�ects
random and score shown in the introduction. For greater gran-
ularity we break it down into two typeclasses: MonadSample for
sampling random variables, and MonadCond for conditioning
(scoring):

type R = Double
class Monad m) MonadSample m where

3

True mathematical
semantics

• exact inference is intractable

• approximate inference algorithms work  
by manipulating intermediate
representations

20/35

Overview
• Part 1: Illustrations of key ideas.

• Part 2: From new foundations to  
modular and valid inference algorithms.

• A synthetic measure theory?

• Quasi-Borel spaces

• Modular & valid inference algorithms

• Part 3: What next?

Synthetic measure theory
What’s a mathematical universe for
probabilistic programming?

What’s a synthetic measure theory?

• Want h.o. functions and natural numbers. 
Cartesian closed category with sums.

• Want a space of measures M(X) on every space X. 
A commutative monad M.

• Want M(1) to behave like [0,∞] 
M(0)=1, M(X+Y)=M(X)×M(Y).

Kock TAC 2012
Ścibior, Kammar, Vákár,
Staton, Yang, Cai,
Ostermann, Moss,
Heunen, Ghahramani
POPL 2018

21/35

Synthetic measure theory: notation

Notation Meaning Terminology
R ! M 1 Scalars
f∗µ ! (M f)(µ) Push-forward
µ(X) ! !∗µ The total measure
δx ! return(x) Dirac distribution
!

X
f(x)µ(dx) ! µ >>= f Kock integral

w ⊙ µ !
!

X
(w(x)⊙ δx)µ(dx) Rescaling

!

Y
f(x, y)k(x, dy) !

!

Y
f(x, y)k(x)(dy) Kernel integration

"

X×Y
f(x, y)µ(dx, dy) !

!

X×Y
f(z)µ(dz) Iterated integrals

µ⊗ ν !
!

X

(
!

Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] ! µ >>= f Expectation∫
X f(x)µ(dx) ! ER

x∼µ[f(x)] Lebesgue integral

Heunen, Kammar,Moss, Ścibior, Staton, Vákár, andYang The Semantic Structure of Quasi-Borel Spaces

Synthetic measure theorySynthetic measure theory: notation

Notation Meaning Terminology
R ! M 1 Scalars
f∗µ ! (M f)(µ) Push-forward
µ(X) ! !∗µ The total measure
δx ! return(x) Dirac distribution
!

X
f(x)µ(dx) ! µ >>= f Kock integral

w ⊙ µ !
!

X
(w(x)⊙ δx)µ(dx) Rescaling

!

Y
f(x, y)k(x, dy) !

!

Y
f(x, y)k(x)(dy) Kernel integration

"

X×Y
f(x, y)µ(dx, dy) !

!

X×Y
f(z)µ(dz) Iterated integrals

µ⊗ ν !
!

X

(
!

Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] ! µ >>= f Expectation∫
X f(x)µ(dx) ! ER

x∼µ[f(x)] Lebesgue integral

Heunen, Kammar,Moss, Ścibior, Staton, Vákár, andYang The Semantic Structure of Quasi-Borel Spaces

Synthetic measure theory: notation

Notation Meaning Terminology
R ! M 1 Scalars
f∗µ ! (M f)(µ) Push-forward
µ(X) ! !∗µ The total measure
δx ! return(x) Dirac distribution
!

X
f(x)µ(dx) ! µ >>= f Kock integral

w ⊙ µ !
!

X
(w(x)⊙ δx)µ(dx) Rescaling

!

Y
f(x, y)k(x, dy) !

!

Y
f(x, y)k(x)(dy) Kernel integration

"

X×Y
f(x, y)µ(dx, dy) !

!

X×Y
f(z)µ(dz) Iterated integrals

µ⊗ ν !
!

X

(
!

Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] ! µ >>= f Expectation∫
X f(x)µ(dx) ! ER

x∼µ[f(x)] Lebesgue integral

Heunen, Kammar,Moss, Ścibior, Staton, Vákár, andYang The Semantic Structure of Quasi-Borel Spaces

Synthetic measure theory: notation

Notation Meaning Terminology
R ! M 1 Scalars
f∗µ ! (M f)(µ) Push-forward
µ(X) ! !∗µ The total measure
δx ! return(x) Dirac distribution
!

X
f(x)µ(dx) ! µ >>= f Kock integral

w ⊙ µ !
!

X
(w(x)⊙ δx)µ(dx) Rescaling

!

Y
f(x, y)k(x, dy) !

!

Y
f(x, y)k(x)(dy) Kernel integration

"

X×Y
f(x, y)µ(dx, dy) !

!

X×Y
f(z)µ(dz) Iterated integrals

µ⊗ ν !
!

X

(
!

Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] ! µ >>= f Expectation∫
X f(x)µ(dx) ! ER

x∼µ[f(x)] Lebesgue integral

Heunen, Kammar,Moss, Ścibior, Staton, Vákár, andYang The Semantic Structure of Quasi-Borel Spaces

Synthetic measure theory: notation

Notation Meaning Terminology
R ! M 1 Scalars
f∗µ ! (M f)(µ) Push-forward
µ(X) ! !∗µ The total measure
δx ! return(x) Dirac distribution
!

X
f(x)µ(dx) ! µ >>= f Kock integral

w ⊙ µ !
!

X
(w(x)⊙ δx)µ(dx) Rescaling

!

Y
f(x, y)k(x, dy) !

!

Y
f(x, y)k(x)(dy) Kernel integration

"

X×Y
f(x, y)µ(dx, dy) !

!

X×Y
f(z)µ(dz) Iterated integrals

µ⊗ ν !
!

X

(
!

Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] ! µ >>= f Expectation∫
X f(x)µ(dx) ! ER

x∼µ[f(x)] Lebesgue integral

Heunen, Kammar,Moss, Ścibior, Staton, Vákár, andYang The Semantic Structure of Quasi-Borel Spaces

+ve scalars [0,1]
pushforward

Dirac measure
Integration

Product meas.
Expectation

Synthetic measure theory: notation

Notation Meaning Terminology
R ! M 1 Scalars
f∗µ ! (M f)(µ) Push-forward
µ(X) ! !∗µ The total measure
δx ! return(x) Dirac distribution
!

X
f(x)µ(dx) ! µ >>= f Kock integral

w ⊙ µ !
!

X
(w(x)⊙ δx)µ(dx) Rescaling

!

Y
f(x, y)k(x, dy) !

!

Y
f(x, y)k(x)(dy) Kernel integration

"

X×Y
f(x, y)µ(dx, dy) !

!

X×Y
f(z)µ(dz) Iterated integrals

µ⊗ ν !
!

X

(
!

Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] ! µ >>= f Expectation∫
X f(x)µ(dx) ! ER

x∼µ[f(x)] Lebesgue integral

Heunen, Kammar,Moss, Ścibior, Staton, Vákár, andYang The Semantic Structure of Quasi-Borel Spaces

 Cart closed category with + & a commutative additive monad.

Dictionary:

Problem: classical measure theory  
 is not a model!

Kock TAC 2012
Ścibior, Kammar, Vákár,
Staton, Yang, Cai,
Ostermann, Moss,
Heunen, Ghahramani
POPL 2018

21/35

Overview
• Part 1: Illustrations of key ideas.

• Part 2: From new foundations to  
modular and valid inference algorithms.

• A synthetic measure theory?

• Quasi-Borel spaces

• Modular & valid inference algorithms

• Part 3: What next?

Yoneda
embedding

A semantic model

Standard
Borel spaces

Quasi-Borel
spaces

Models  
first order
language with
sample, 
score,
norm

Models  
higher order
language with
sample, 
score,
norm
Theorem. Adequacy.Slogan: Random  

elements come first.
23/35

Random elements

α : Ω → X

• X – set of values.

• Ω = ℝ – set of random seeds.

• Random seed generator.

24/35

Quasi-Borel spaces
Defn. A quasi-Borel space is a pair (X,M) where

• X is a set
• M ⊆ [ℝ→X]

• if f : ℝ→ℝ measurable and g ∈ M then gf ∈ M.
• piecewise combination: if ℝ=⨄i∈ℕRi with Ri Borel

and α1,α2, … ∈ M, then ⨄i∈ℕ(αi∩(Ri×X))∈M.
• all constant functions are in M

A morphism (X,M) → (Y,N) is a function f : X → Y 
such that g ∈ M implies fg ∈ N

such that

Heunen, Kammar,
Staton, Yang, LICS 2017

25/35

Quasi-Borel spaces

Example: X is a standard Borel measurable space,
 M ⊆ [ℝ→X] comprises the measurable functions.

Proposition. Quasi-Borel spaces include standard
Borel spaces fully faithfully.

Proposition. The set of morphisms again forms a
quasi-Borel space: we have higher order functions.

Defn. A quasi-Borel space is a pair (X,M) where
• X is a set
• M ⊆ [ℝ→X] s.t. ...

Heunen, Kammar,
Staton, Yang, LICS 2017

25/35

Synthetic measure theory
What’s the mathematical universe for
probabilistic programming?

What’s a synthetic measure theory?

• Want h.o. functions and natural numbers. 
Cartesian closed category with sums.

• Want a space of measures M(X) on every space X. 
A commutative monad M.

• Want M(1) to behave like [0,∞] 
M(0)=1, M(X+Y)=M(X)×M(Y).

✔

26/35

‘Quasi-Borel
spaces’

Standard
Borel spaces

Defn. A quasi-Borel space is a pair (X,M) where
• X is a set
• M ⊆ [ℝ→X] s.t. ...

Defn. A measure on a quasi-Borel space is a pair 
 (μ , f)
a σ-finite measure  
on ℝ

a function f : ℝ→X in M
(modulo inducing the same integration operator)

Heunen, Kammar, Staton,
Yang, LICS 2017

27/35

Synthetic measure theory
What’s the mathematical universe for
probabilistic programming?

What’s a synthetic measure theory?

• Want h.o. functions and natural numbers. 
Cartesian closed category with sums.

• Want a space of measures M(X) on every space X. 
A commutative monad M.

• Want M(1) to behave like [0,∞] 
M(0)=1, M(X+Y)=M(X)×M(Y).

✔
✔

✔
27/35

‘Quasi-Borel
spaces’

Standard
Borel spaces

Proposition. A measure on [X →Y] is a pair

(μ , f)
a measure on ℝ

a measurable  
function
f : ℝ ⨉ X →Y

– a ‘random function’.

Heunen, Kammar, Staton,
Yang, LICS 2017

Example: piecewise : M(ℝ→ℝ) → M(ℝ→ℝ)

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 g = λx. s x + b in
 return g)

NB ℝ≅ℝ×ℝ

In this example,
• μ is multivariate normal,
• f ((s,b),x) = sx+b

Heunen, Kammar, Staton,
Yang, LICS 2017

29/35

Overview
• Part 1: Illustrations of key ideas.

• Part 2: From new foundations to  
modular and valid inference algorithms.

• A synthetic measure theory?

• Quasi-Borel spaces

• Modular & valid inference algorithms

• Part 3: What next?

Modular inference algorithms
221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Functional programming for modular Bayesian inference PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn�1

Figure 1. Bayesian inference

semantics to prove their correctness. As a consequence, our
implementation is very close to its theoretical foundations,
giving users high assurance in the correctness of inference
algorithms they build using the library.
Figure 1 depicts a high-level view of Bayesian inference

in a typical probabilistic programming system. The system
transforms themodel through a sequence of inference-speci�c
representations IRi . At each step, it applies an inference-
speci�c transformation ti , eventually producing a probabilis-
tic program, called a sampler, whose execution produces
approximate samples from the posterior distribution.
Our library provides such inference representations, and

inference transformers IT, that manipulate these represen-
tations. Users can then de�ne custom IRs by composing
transformers to obtain inference transformer stacks:

IR’ = IT1 � IT2 � · · · � IT`IR
Transformers also allow lifting an inference transformation
to an inference transformation between the transformed
representations:

lift :: (IR1 ! IR2) ! IT IR1 ! IT IR2

To support our claim for modularity, we combine these build-
ing blocks and implement a spectrum of advanced inference
algorithms: Resample-Move SMC [13], Particle Marginal
MH [2], and SMC2 [9].

Our aim is to enable such lean and �exible high-level prob-
abilistic programming libraries to form viable alternatives
to manual Bayesian inference and to existing monolithic
probabilistic programming systems. To achieve it, we need a
performant implementation so that the �exibility in model
construction and modular inference design can be enjoyed
without sacri�cing performance.

Claim 2. Removing the performance bottlenecks in our ap-
proach requires general purpose tried-and-tested programming
language design and implementation tools and techniques.

To support this claim, we �rst distinguish between two
kinds of performance complexity we associate with an in-
ference algorithm. Its statistical complexity measures the
number of iterations we need to run the resulting probabilis-
tic sampler in order to approximate the posterior distribution.
Our library faithfully implements the state-of-the-art algo-
rithms, and so the statistical complexity of our samplers is
performant. The bottlenecks stem from the computational
complexity of the resulting sampler: our use of higher-order
functions, inductive types, and transformer stacks adds lay-
ers of overhead that �ne-tuned manual samplers eliminate.

We claim that the expertise needed to remove these bot-
tlenecks lies not with experts in statistics and Bayesian infer-
ence, but with programming languages experts. Moreover,
we claim that this expertise is already well-developed, and
the only barrier is connecting the experts with the applica-
tion domain. Indeed, Figure 1 depicts the typical structure of
an optimising compiler, transforming the source code, the
model, through a series of intermediate representations, and
emitting an optimised object code, the sampler. Therefore,
we view our approach and its associated libraries as a vehi-
cle to open up a fruitful application area for programming
language design and implementation.
To support this claim, we benchmark the computational

complexity of our library against existing probabilistic pro-
gramming systems and use GHC’s built-in pro�ler to inves-
tigate its bottlenecks. For example, in our preliminary ex-
periments the bottleneck was an ine�cient implementation
of a free monad. Replacing the free monad with a Church-
encoded version removed the performance bottleneck. We
expect that applying similar techniques, such as �nally-
tagless [6], stream fusion [10], information-�ow graphs and
other static-analyses, and aggressive compiler optimisations,
would remove similar bottlenecks.

The paper is structured as follows. In Section 2 we show
the construction of basic inference transformers and associ-
ated transformations, demonstrating how their application
leads to simple inference algorithms. In Section 3 we show
how to compose those building blocks to obtain advanced
inference algorithms. Then in Section 4 we present an em-
pirical evaluation of our library comparing it with existing
probabilistic programming systems in terms of performance
and implementation e�ort required. In Section 5 we discuss
how our modular structure enables a deterministic approach
to testing inference algorithm implementations. Finally, in
Section 6 we discuss related work and in Section 7 we present
directions for future work and conclude.

2 Building blocks
We express the building blocks for inference algorithms using
standard functional programming techniques. Unless stated
otherwise, the structures presented in this section follow the
mathematical formulation of Ścibior et al. [32].

2.1 Models
Weexpress probabilistic programs as computations abstracted
over inference representations, instances of a particular type-
class called MonadInfer supporting the probabilistic e�ects
random and score shown in the introduction. For greater gran-
ularity we break it down into two typeclasses: MonadSample for
sampling random variables, and MonadCond for conditioning
(scoring):

type R = Double
class Monad m) MonadSample m where

3

Quasi-Borel space
semantics

31/35

Modular inference algorithms

Example IR (intermediate representation): 
[0,1]-indexed decision trees.

The semantic structure of quasi-Borel spaces
Chris Heunen

Univ. Edinburgh

Ohad Kammar
Sam Staton

Univ. Oxford

Sean Moss
Matthijs Vákár

Adam Ścibior

Univ. Cambridge

Hongseok Yang

KAIST, South Korea

Abstract
Quasi-Borel spaces are a new mathematical structure that supports
higher-order probability theory, first-order iteration, and modular se-
mantic validation of Bayesian inference algorithms with continuous
distributions. Like a measurable space, a quasi-Borel space is a set with
extra structure suitable for defining probability and measure distribu-
tions. But unlikemeasurable spaces, quasi-Borel spaces and their struct-
ure-preserving maps form a well-behaved category: they are cartesian-
closed, and so suitable for higher-order semantics, and they also form
a model of Kock’s synthetic measure theory, and so suitable for proba-
bilistic, and measure-theoretic, developments, such as the Metropolis-
Hastings-Green theorem underlying Markov-Chain Monte-Carlo algo-
rithms.

Keywords probabilistic programming, denotational semantics, quasi-
Borel spaces, quasi-toposes, universal algebra, recursive types, higher-
order recursion, extensional type theory, categories of partial maps, do-
main theory

1 Motivation
Semantics of programming languages We motivate quasi-Borel
spaces from the viewpoint of semantic models of programming lan-
guages.
We put probability to one side for a moment, to consider a very sim-

ple finite functional programming language. For simplicity we assume
all programs terminate with a (deterministic) result. We consider types
for the language, given by the grammar

A,B ::= bool | unit | A × B | A→ B

In this language, types can be interpreted as finite sets, and a program
of type A is interpreted as an element of the corresponding set. In par-
ticular, this allows us to understand inhabitants of the function type
as functions in the usual mathematical sense. This is the basic idea of
functional programming.
Next, we consider a probabilistic extension to the programming lan-

guage, with the same types. Now, we interpret a program of typeA, not
as an element of the corresponding set, but as a probability distribution
on the set.
Finite probability theory is not particularly expressive, and so we

consider infinite types such as natural numbers and real numbers. The
standard way to formally understand probabilities on the real numbers
(or indeed the function space 2N) is through measure theory. Indeed if
we restrict to a first-order type theory, with no function types:

A,B ::= real | bool | unit | A × B
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPS’18, January 2018, Los Angeles, CA, USA
© 2018 Copyright held by the owner/author(s).

then we can interpret each type as a measurable space (a set with a
given σ -algebra of subsets), and each program of typeA as measure on
the corresponding measurable space.
A fundamental problem with measurable spaces is that they do not

form a cartesian closed category [1]. This result means that we cannot
interpret arbitrary function types as measurable spaces without los-
ing the basic equational theory of functions (λ-abstraction and β and η
laws).
Nonetheless, we argue, functions are a crucial part of programming

and software engineering, and a valuable idea in statistics. Moreover,
functions are perfectly consistent with probabilistic constructions: the
problem is with the standard measure-theoretic starting point. Quasi-
Borel spaces [4] shift the focus from axiomatising the measurable obser-
vations in the space to axiomatising the random elements of the space.
We argue that quasi-Borel spaces are a firm yet practical foundation
for higher-order probabilistic programming.

Example higher-order probabilistic programs Examples of higher-
order functions abound throughout programming language theory and
software engineering. Our account of inference algorithms in [8]makes
extensive use of higher-order functions and their compositional inter-
action with the other type-constructors, and we found that quasi-Borel
spaces are a convenient way to understand what they meant and why
the inference algorithms are correct. For a simple example ([8, Ex. 5.2])
the initial monad Sam with an operation sample : Sam [0, 1] is based
on the type

Sam α = {Returnα | Sample ([0, 1]→ Sam α)};

i.e. decision trees with [0, 1]-indexed branching, and the monadic bind
operation [(Sam α) → (α → (Sam β)) → Sam β] is a second-order
function. This freemonad plays a crucial role in ourmethod: it provides
a representation for probabilistic programs without conditioning, i.e.,
samplers.

2 Quasi-Borel spaces
When considering probabilistic programs, the distributions we manip-
ulate are not arbitrary, but come from a particular random source. Sim-
ilarly, in statistics and probability theory, the focus is primarily on ran-
dom variables over some fixed global sample space rather than arbi-
trary probability measures.
With this observation, we replace the measure-theoretic axiomati-

sation of measurable subsets of a space X with an axiomatisation of
random elements of a space X : functions α : R → X along which
we can push-forward a measure onto our space. Thus, in quasi-Borel
spaces, each probabilistic program of type A will be interpreted as a
random element R→ X , where X is the set corresponding to the type
A and R is a sample space. In the case X = R, we cannot define the
crucial probabilistic concepts such as the expectation of a real-valued
random elementR→ R, i.e., a random variable, for arbitrary functions.
In measure theory, we derive the functions admitting such properties,
i.e., the measurable functions, from themeasurable subsets in the space.

1

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Functional programming for modular Bayesian inference PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn�1

Figure 1. Bayesian inference

semantics to prove their correctness. As a consequence, our
implementation is very close to its theoretical foundations,
giving users high assurance in the correctness of inference
algorithms they build using the library.
Figure 1 depicts a high-level view of Bayesian inference

in a typical probabilistic programming system. The system
transforms themodel through a sequence of inference-speci�c
representations IRi . At each step, it applies an inference-
speci�c transformation ti , eventually producing a probabilis-
tic program, called a sampler, whose execution produces
approximate samples from the posterior distribution.
Our library provides such inference representations, and

inference transformers IT, that manipulate these represen-
tations. Users can then de�ne custom IRs by composing
transformers to obtain inference transformer stacks:

IR’ = IT1 � IT2 � · · · � IT`IR
Transformers also allow lifting an inference transformation
to an inference transformation between the transformed
representations:

lift :: (IR1 ! IR2) ! IT IR1 ! IT IR2

To support our claim for modularity, we combine these build-
ing blocks and implement a spectrum of advanced inference
algorithms: Resample-Move SMC [13], Particle Marginal
MH [2], and SMC2 [9].

Our aim is to enable such lean and �exible high-level prob-
abilistic programming libraries to form viable alternatives
to manual Bayesian inference and to existing monolithic
probabilistic programming systems. To achieve it, we need a
performant implementation so that the �exibility in model
construction and modular inference design can be enjoyed
without sacri�cing performance.

Claim 2. Removing the performance bottlenecks in our ap-
proach requires general purpose tried-and-tested programming
language design and implementation tools and techniques.

To support this claim, we �rst distinguish between two
kinds of performance complexity we associate with an in-
ference algorithm. Its statistical complexity measures the
number of iterations we need to run the resulting probabilis-
tic sampler in order to approximate the posterior distribution.
Our library faithfully implements the state-of-the-art algo-
rithms, and so the statistical complexity of our samplers is
performant. The bottlenecks stem from the computational
complexity of the resulting sampler: our use of higher-order
functions, inductive types, and transformer stacks adds lay-
ers of overhead that �ne-tuned manual samplers eliminate.

We claim that the expertise needed to remove these bot-
tlenecks lies not with experts in statistics and Bayesian infer-
ence, but with programming languages experts. Moreover,
we claim that this expertise is already well-developed, and
the only barrier is connecting the experts with the applica-
tion domain. Indeed, Figure 1 depicts the typical structure of
an optimising compiler, transforming the source code, the
model, through a series of intermediate representations, and
emitting an optimised object code, the sampler. Therefore,
we view our approach and its associated libraries as a vehi-
cle to open up a fruitful application area for programming
language design and implementation.
To support this claim, we benchmark the computational

complexity of our library against existing probabilistic pro-
gramming systems and use GHC’s built-in pro�ler to inves-
tigate its bottlenecks. For example, in our preliminary ex-
periments the bottleneck was an ine�cient implementation
of a free monad. Replacing the free monad with a Church-
encoded version removed the performance bottleneck. We
expect that applying similar techniques, such as �nally-
tagless [6], stream fusion [10], information-�ow graphs and
other static-analyses, and aggressive compiler optimisations,
would remove similar bottlenecks.

The paper is structured as follows. In Section 2 we show
the construction of basic inference transformers and associ-
ated transformations, demonstrating how their application
leads to simple inference algorithms. In Section 3 we show
how to compose those building blocks to obtain advanced
inference algorithms. Then in Section 4 we present an em-
pirical evaluation of our library comparing it with existing
probabilistic programming systems in terms of performance
and implementation e�ort required. In Section 5 we discuss
how our modular structure enables a deterministic approach
to testing inference algorithm implementations. Finally, in
Section 6 we discuss related work and in Section 7 we present
directions for future work and conclude.

2 Building blocks
We express the building blocks for inference algorithms using
standard functional programming techniques. Unless stated
otherwise, the structures presented in this section follow the
mathematical formulation of Ścibior et al. [32].

2.1 Models
Weexpress probabilistic programs as computations abstracted
over inference representations, instances of a particular type-
class called MonadInfer supporting the probabilistic e�ects
random and score shown in the introduction. For greater gran-
ularity we break it down into two typeclasses: MonadSample for
sampling random variables, and MonadCond for conditioning
(scoring):

type R = Double
class Monad m) MonadSample m where

3

Manipulations of this structure are higher-order
functions.

Theorem: MHG works in quasi-Borel spaces.
31/35

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Figure 3. Execution times of inference algorithms with varying sample size. The numbers after model names are the sizes of
the datasets used. The number 10 in RMSMC10 indicates that we used 10 particles and only varied the number of rejuvenation
steps. The X axis for RMSMC shows the number of rejuvenation steps applied per particle after each resampling operation.

In our library we can perform deterministic tests of Monte
Carlo methods by replacing the bottommonad SamplerIOwith
Exact that computes exact answers for discrete models. It is
de�ned as follows, omitting conversions between R and Log R:

newtype Exact a = Exact {run :: [(a, Log R)]}

instance Monad Exact where
return x = Exact [(x,1)]

m >>= f = Exact

[(y, p*q) | (x,p) run m, (y,q) run (f x)]

instance MonadSample Exact where
random = error �Not�available�

bernoulli p = Exact [(True , p), (False , 1-p)]

instance MonadCond Exact where
score w = Exact [((),w)]

normalForm :: Ord a) Exact a ! [(a, Log R)]

-- sort , aggregate , and remove zeros

The function normalForm sorts the list according to the �rst
element, aggregates weights of equal elements, and removes
elements with zero weight. It allows us to compare distribu-
tions represented by lists for equality.

Any correct inference transformation should not alter the
result of Exact. For example, if ~== is approximate equality
modulo �oating-point errors then we can write a determin-
istic test for smc as follows:

(normalForm . (>>= Exact) . runPopulation . smc 2 2)

sprinkler ~== normalForm sprinkler

Our implementation of traces as [R] is fundamentally con-
tinuous so it does not work with Exact. However, a more
elaborate trace type that distinguishes between continuous
and discrete variables would enable us to write similar tests
for mhStep.

Deterministic tests of the kind described above are limited
in that they can only be applied to small discrete models and
only verify certain aspects of correctness. In particular for
SMC it only checks that the result is unbiased but not that it
is consistent. Similarly a test for MHwould only check that it
preserves the posterior distribution but not that it converges
to it. Nonetheless, we found those tests to be invaluable
in practice. For example, if we forgot to preserve the total

10

Metropolis-Hastings Sequential MC

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Figure 3. Execution times of inference algorithms with varying sample size. The numbers after model names are the sizes of
the datasets used. The number 10 in RMSMC10 indicates that we used 10 particles and only varied the number of rejuvenation
steps. The X axis for RMSMC shows the number of rejuvenation steps applied per particle after each resampling operation.

In our library we can perform deterministic tests of Monte
Carlo methods by replacing the bottommonad SamplerIOwith
Exact that computes exact answers for discrete models. It is
de�ned as follows, omitting conversions between R and Log R:

newtype Exact a = Exact {run :: [(a, Log R)]}

instance Monad Exact where
return x = Exact [(x,1)]

m >>= f = Exact

[(y, p*q) | (x,p) run m, (y,q) run (f x)]

instance MonadSample Exact where
random = error �Not�available�

bernoulli p = Exact [(True , p), (False , 1-p)]

instance MonadCond Exact where
score w = Exact [((),w)]

normalForm :: Ord a) Exact a ! [(a, Log R)]

-- sort , aggregate , and remove zeros

The function normalForm sorts the list according to the �rst
element, aggregates weights of equal elements, and removes
elements with zero weight. It allows us to compare distribu-
tions represented by lists for equality.

Any correct inference transformation should not alter the
result of Exact. For example, if ~== is approximate equality
modulo �oating-point errors then we can write a determin-
istic test for smc as follows:

(normalForm . (>>= Exact) . runPopulation . smc 2 2)

sprinkler ~== normalForm sprinkler

Our implementation of traces as [R] is fundamentally con-
tinuous so it does not work with Exact. However, a more
elaborate trace type that distinguishes between continuous
and discrete variables would enable us to write similar tests
for mhStep.

Deterministic tests of the kind described above are limited
in that they can only be applied to small discrete models and
only verify certain aspects of correctness. In particular for
SMC it only checks that the result is unbiased but not that it
is consistent. Similarly a test for MHwould only check that it
preserves the posterior distribution but not that it converges
to it. Nonetheless, we found those tests to be invaluable
in practice. For example, if we forgot to preserve the total

10

Performance Ścibior, Kammar,
Ghahramani  
Submitted 2018

Overview
• Part 1: Illustrations of key ideas.

• Part 2: From new foundations to  
modular and valid inference algorithms.

• A synthetic measure theory

• Quasi-Borel spaces as a model

• Modular & valid inference algorithms

• Part 3: What next?

Commutativity

– sample, which draws from a prior distribution, which may be discrete (like
a Bernoulli distribution) or continuous (like a Gaussian distribution);

– score, or observe, which records the likelihood of a particular observed data
point, sometimes called ‘soft conditioning’;

– normalize, which finds the normalization constant and the posterior proba-
bility distribution.

The implementation of normalize typically involves simulation. One hope is that
we can use program transformations to improve the e�ciency of this simulation,
or even to symbolically calculate the normalizing constant. We turn to some
transformations of this kind in Section 4.1. But a very first program transfor-
mation is to reorder the lines of a program, as long as the data dependencies are
preserved, e.g.

letx = t in

let y = u in

v

=

let y = u in

letx = t in

v

(2)

where x not free in u, y not free in t. This is known as commutativity. For exam-
ple, in a traditional programming language with memory, this transformation
is valid provided t and u reference di↵erent locations. In probabilistic program-
ming, a fundamental intuition is that programs are stateless. From a practical
perspective, it is essential to be able to reorder lines and so access more sophis-
ticated program transformations (e.g. §4.1); reordering lines can also a↵ect the
e�ciency of simulation. The main contribution of this paper is the result:

Theorem 4 (§4.2). The commutativity equation (2) is always valid in proba-

bilistic programs.

1.1 A first introduction to probabilistic programming.

To illustrate the key ideas of probabilistic programming, consider the following
simple problem, which we explain in English and then specify as a probabilistic
program.

1. A telephone operator has forgotten what day it is.
2. He receives on average ten calls per hour in the week and three calls per

hour at the weekend.
3. He observes four calls in a given hour.
4. What is the probability that it is a week day?

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(5

7

)) in
3. let r = if x then 10 else 3 in
4. observe 4 from poisson(r);
5. return(x)) 0

0.25

0 4 20

poisson(10)

poisson(3)

where x not free in u,  
 y not free in t

a probabilistic program (via Thm. 6) and then using the denotational semantics
in [43]. From right to left: given a probability kernel k : JAK ([0,1) ⇥ JBK),
we build an s-finite kernel

Jx : A `p let (r, y) = sample(k(x)) in score(r); return(y) : BK : JAK JBK.

Valuations versus measures. Some authors advocate using valuations on topo-
logical spaces instead of measures on measurable spaces. This appears to rule
out the problematic examples, such as the counting measure on R. Indeed, Vick-
ers [45] has shown that a monad of valuations on locales is commutative. This
suggests a constructive or topological model of probabilistic programming (see
[8,15]) but a potential obstacle is that conditioning is not always computable [1].

6.2 Related work on commutativity more generally

Multicategories and data flow graphs. An early discussion of commutativ-
ity is in Lambek’s work on deductive systems and categories [22]. A judgement
x

1

: A
1

, . . . , x

n

: A
n

` t : B is interpreted as a multimorphism (A
1

. . . A

n

) ! B.
These could be drawn as triangles:

A1
A2

An

Bt...

(This hints at a link with the graphical ideas underlying several probabilis-
tic programming languages e.g. Stan [40].) Alongside requiring associativity of
composition, Lambek requires commutativity:

vu

t
vu

t
=

which matches with our commutativity condition (2). (See also [42].) In this
diagrammatic notation, commutativity says that the semantics is preserved un-
der topological transformations. Without commutativity, one would need extra
control flow wires to give a topological description of what rewritings are ac-
ceptable (e.g. [19,28]). Our main technical results (Lemma 3 and Prop. 5) can
be phrased as follows:

Measurable spaces and s-finite kernels X

1

⇥ · · · ⇥X

n

 Y form a mul-

ticategory.

34/35

Commutativity=exchangeability?

– sample, which draws from a prior distribution, which may be discrete (like
a Bernoulli distribution) or continuous (like a Gaussian distribution);

– score, or observe, which records the likelihood of a particular observed data
point, sometimes called ‘soft conditioning’;

– normalize, which finds the normalization constant and the posterior proba-
bility distribution.

The implementation of normalize typically involves simulation. One hope is that
we can use program transformations to improve the e�ciency of this simulation,
or even to symbolically calculate the normalizing constant. We turn to some
transformations of this kind in Section 4.1. But a very first program transfor-
mation is to reorder the lines of a program, as long as the data dependencies are
preserved, e.g.

letx = t in

let y = u in

v

=

let y = u in

letx = t in

v

(2)

where x not free in u, y not free in t. This is known as commutativity. For exam-
ple, in a traditional programming language with memory, this transformation
is valid provided t and u reference di↵erent locations. In probabilistic program-
ming, a fundamental intuition is that programs are stateless. From a practical
perspective, it is essential to be able to reorder lines and so access more sophis-
ticated program transformations (e.g. §4.1); reordering lines can also a↵ect the
e�ciency of simulation. The main contribution of this paper is the result:

Theorem 4 (§4.2). The commutativity equation (2) is always valid in proba-

bilistic programs.

1.1 A first introduction to probabilistic programming.

To illustrate the key ideas of probabilistic programming, consider the following
simple problem, which we explain in English and then specify as a probabilistic
program.

1. A telephone operator has forgotten what day it is.
2. He receives on average ten calls per hour in the week and three calls per

hour at the weekend.
3. He observes four calls in a given hour.
4. What is the probability that it is a week day?

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(5

7

)) in
3. let r = if x then 10 else 3 in
4. observe 4 from poisson(r);
5. return(x)) 0

0.25

0 4 20

poisson(10)

poisson(3)

• Church considers user defined  
‘exchangeable random primitives’ – new
commutative constructions.

• Perhaps these make new models of synthetic
measure theory 
– just as 1980s ideas in Bayesian non-parametric
came out of non-standard analysis

Staton, Yang, Ackerman, Freer, Roy, PPS 2017

34/35

Overview
• Part 1: Illustrations of key ideas.

• Part 2: From new foundations to  
modular and valid inference algorithms.

• A synthetic measure theory

• Quasi-Borel spaces are a model

• Modular & valid inference algorithms

• Part 3: What next? 
Exchangeability and commutativity in  
non-parametric models

